
Machine Learning in Produc�onMachine Learning in Produc�on

Deploying a ModelDeploying a Model
1

Deeper into architecture and design...

2

Learning Goals
Understand important quality considera�ons when deploying ML components
Follow a design process to explicitly reason about alterna�ve designs and their
quality tradeoffs
Gather data to make informed decisions about what ML technique to use and
where and how to deploy it
Understand the power of design pa�erns for codifying design knowledge

Create architectural models to reason about relevant characteris�cs
Cri�que the decision of where an AI model lives (e.g., cloud vs edge vs hybrid),
considering the relevant tradeoffs
Deploy models locally and to the cloud
Document model inference services

3

Readings
Required reading:

� Hulten, Geoff. "
" Apress, 2018, Chapter 13 (Where

Intelligence Lives).
📰 Daniel Smith. "

." TheoryLane Blog Post. 2017.

Recommended reading:
� Rick Kazman, Paul Clements, and Len Bass.

 Addison-Wesley Professional, 2012, Chapter 1

Building Intelligent Systems: A Guide to Machine
Learning Engineering.

Exploring Development Pa�erns in Data
Science

So�ware architecture
in prac�ce.

4

https://www.buildingintelligentsystems.com/
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

Deploying a Model is Easy

5

Deploying a Model is Easy
Model inference component as func�on/library

from sklearn.linear_model import LogisticRegression
model = … # learn model or load serialized model ...
def infer(feature1, feature2):
 return model.predict(np.array([[feature1, feature2]])

6

Deploying a Model is Easy
Model inference component as a service

from flask import Flask, escape, request
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = '/tmp/uploads'
detector_model = … # load model…

inference API that returns JSON with classes
found in an image
@app.route('/get_objects', methods=['POST'])
def pred():
 uploaded_img = request.files["images"]
 coverted img = … # feature encoding of uploaded img

7

Deploying a Model is Easy
Packaging a model inference service in a container

FROM python:3.8-buster
RUN pip install uwsgi==2.0.20
RUN pip install tensorflow==2.7.0
RUN pip install flask==2.0.2
RUN pip install gunicorn==20.1.0
COPY models/model.pf /model/
COPY ./serve.py /app/main.py
WORKDIR ./app
EXPOSE 4040
CMD ["gunicorn", "-b 0.0.0.0:4040", "main:app"]

8

Deploying a Model is Easy
Model inference component as a service in the cloud

Package in container or other infrastructure
Deploy in cloud infrastructure
Auto-scaling with demand ("Stateless Serving Func�ons Pa�ern")
MLOps infrastructure to automate all of this (more on this later)

 (low code service crea�on, deployment, model
registry),

 (automated deployment and scaling of models on AWS),
 (tensorflow GRPC services)

 (no-code model service and many many addi�onal
services for monitoring and opera�ons on Kubernetes)

BentoML

Cortex
TFX model serving
Seldon Core

9

https://github.com/bentoml/BentoML
https://github.com/bentoml/BentoML
https://www.tensorflow.org/tfx/guide/serving
https://www.seldon.io/tech/products/core/

But is it really easy?
Offline use?

Deployment at scale?

Hardware needs and opera�ng cost?

Frequent updates?

Integra�on of the model into a system?

Mee�ng system requirements?

Every system is different!
10

Every System is Different
Personalized music recommenda�ons for Spo�fy

Transcrip�on service startup

Self-driving car

Smart keyboard for mobile device

11

Inference is a Component within a System

12

Recall: Thinking like a
So�ware Architect

13

Recall: Systems Thinking

A system is a set of inter-related components that work together in a
par�cular environment to perform whatever func�ons are required to
achieve the system's objec�ve -- Donella Meadows

14

Architectural Modeling and
Reasoning

15

16

Map of Pittsburgh. Abstraction for navigation with cars.

Speaker notes

17

Cycling map of Pittsburgh. Abstraction for navigation with bikes and walking.

Speaker notes

18

Fire zones of Pittsburgh. Various use cases, e.g., for city planners.

Speaker notes

Analysis-Specific Abstrac�ons
All maps were abstrac�ons of the same real-world construct

All maps were created with different goals in mind
Different relevant abstrac�ons
Different reasoning opportuni�es

Architectural models are specific system abstrac�ons, for reasoning
about specific quali�es

No uniform nota�on

19

What can we reason about?

20

What can we reason about?

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. " " ACM SIGOPS
opera�ng systems review. Vol. 37. No. 5. ACM, 2003.

The Google file system.

21

https://ai.google/research/pubs/pub51.pdf

Scalability through redundancy and replication; reliability wrt to single points of failure; performance on edges; cost

Speaker notes

What can we reason about?

Peng, Zi, Jinqiu Yang, Tse-Hsun Chen, and Lei Ma. "A first look at the integra�on of machine learning
models in complex autonomous driving systems: a case study on Apollo." In Proc. FSE, 2020.

22

Sugges�ons for Graphical Nota�ons
Use nota�on suitable for analysis

Document meaning of boxes and edges in legend

Graphical or textual both okay; whiteboard sketches o�en sufficient

Formal nota�ons available

23

Case Study: Augmented
Reality Transla�on

24

Image:

Speaker notes

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

Case Study: Augmented Reality Transla�on

25

Case Study: Augmented Reality Transla�on

26

Consider you want to implement an instant translation service similar toGoogle translate, but run it on embedded hardware in glasses as an augmented reality service.

Speaker notes

System Quali�es of Interest?

27

Design Decision: Selec�ng
ML Algorithms
What ML algorithms to use and why? Tradeoffs?

28

Relate back to previous lecture about AI technique tradeoffs, including for example Accuracy Capabilities (e.g. classification, recommendation, clustering…) Amount of
training data needed Inference latency Learning latency; incremental learning? Model size Explainable? Robust?

Speaker notes

Design Decision: Where
Should the Model Live?
(Deployment Architecture)

29

Where Should the Models Live?

Cloud? Phone? Glasses?

What quali�es are relevant for the decision?

30

Trigger initial discussion

Speaker notes

Considera�ons
How much data is needed as input for the model?
How much output data is produced by the model?
How fast/energy consuming is model execu�on?
What latency is needed for the applica�on?
How big is the model? How o�en does it need to be updated?
Cost of opera�ng the model? (distribu�on + execu�on)
Opportuni�es for telemetry?
What happens if users are offline?

31

Breakout: Latency and Bandwidth Analysis
1. Es�mate latency and bandwidth requirements between

components
2. Discuss tradeoffs among different deployment models

As a group, post in #lecture tagging group members:

32

Identify at least OCR and Translation service as two AI components in a larger system. Discuss which system components are worth modeling (e.g., rendering, database,
support forum). Discuss how to get good estimates for latency and bandwidth.

Some data: 200ms latency is noticable as speech pause; 20ms is perceivable as video delay, 10ms as haptic delay; 5ms referenced as cybersickness threshold for virtual
reality 20ms latency might be acceptable

bluetooth latency around 40ms to 200ms

bluetooth bandwidth up to 3mbit, wifi 54mbit, video stream depending on quality 4 to 10mbit for low to medium quality

google glasses had 5 megapixel camera, 640x360 pixel screen, 1 or 2gb ram, 16gb storage

Speaker notes

33

From the Reading: When would one use
the following designs?

Sta�c intelligence in the product
Client-side intelligence (user-facing devices)
Server-centric intelligence
Back-end cached intelligence
Hybrid models

Consider: Offline use, inference latency, model updates, applica�on
updates, opera�ng cost, scalability, protec�ng intellectual property

34

From the reading:

Static intelligence in the product
difficult to update
good execution latency
cheap operation
offline operation
no telemetry to evaluate and improve

Client-side intelligence
updates costly/slow, out of sync problems
complexity in clients
offline operation, low execution latency

Server-centric intelligence
latency in model execution (remote calls)
easy to update and experiment
operation cost
no offline operation

Back-end cached intelligence
precomputed common results
fast execution, partial offline
saves bandwidth, complicated updates

Hybrid models

Speaker notes

Where Should Feature Encoding Happen?

Should feature encoding happen server-side or client-side? Tradeoffs?

35

When thinking of model inference as a component within a system, feature encoding can happen with the model-inference component or can be the responsibility of the
client. That is, the client either provides the raw inputs (e.g., image files; dotted box in the figure above) to the inference service or the client is responsible for computing
features and provides the feature vector to the inference service (dashed box). Feature encoding and model inference could even be two separate services that are called
by the client in sequence. Which alternative is preferable is a design decision that may depend on a number of factors, for example, whether and how the feature vectors
are stored in the system, how expensive computing the feature encoding is, how often feature encoding changes, how many models use the same feature encoding, and so
forth. For instance, in our stock photo example, having feature encoding being part of the inference service is convenient for clients and makes it easy to update the model
without changing clients, but we would have to send the entire image over the network instead of just the much smaller feature vector for the reduced 300 x 300 pixels.

Speaker notes

Reusing Feature Engineering Code

Avoid training–serving skew
36

The Feature Store Pa�ern
Central place to store, version, and describe feature engineering
code
Can be reused across projects
Possible caching of expensive features

Many open source and commercial offerings, e.g., Feast, Tecton, AWS
SageMaker Feature Store

37

Tecton Feature Store
Tecton Web DemoTecton Web Demo

38

https://www.youtube.com/watch?v=u_L_V2HQ_nQ

More Considera�ons for Deployment
Decisions
Coupling of ML pipeline parts

Coupling with other parts of the system

Ability for different developers and analysts to collaborate

Support online experiments

Ability to monitor

39

Real-Time Serving; Many Models

Peng, Zi, Jinqiu Yang, Tse-Hsun Chen, and Lei Ma. "A first look at the integra�on of machine learning
models in complex autonomous driving systems: a case study on Apollo." In Proc. FSE. 2020.

40

Infrastructure Planning (Facebook Examp.)

Hazelwood, Kim, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov,
Mohamed Fawzy et al. "Applied machine learning at facebook: A datacenter infrastructure
perspec�ve." In Int'l Symp. High Performance Computer Architecture. IEEE, 2018.

41

Opera�onal Robustness
Redundancy for availability?

Load balancer for scalability?

Can mistakes be isolated?
Local error handling?
Telemetry to isolate errors to component?

Logging and log analysis for what quali�es?

42

Integra�ng Models into a
System

43

Recall: Inference is a Component within a
System

44

Separa�ng Models and Business Logic

Based on: Yokoyama, Haruki. "Machine learning system architectural pa�ern for improving
opera�onal stability." In Int'l Conf. So�ware Architecture Companion, pp. 267-274. IEEE, 2019.

45

Separa�ng Models and Business Logic
Clearly divide responsibili�es

Allows largely independent and parallel work, assuming stable
interfaces

Plan loca�on of non-ML safeguards and other processing logic

46

Composing Models: Ensemble and
metamodels

47

Composing Models: Decomposing the
problem, sequen�al

48

Composing Models: Cascade/two-phase
predic�on

49

Composing Models: Retrieval Augmented
Genera�on (RAG)

Figure by Leonie Moniga�
50

https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-langchain-implementation-4e9bd5f6a4f2

Documen�ng Model
Inference Interfaces

51

Why Documenta�on
Model inference between teams:

Data scien�sts developing the model
Other data scien�sts using the model, evolving the model
So�ware engineers integra�ng the model as a component
Operators managing model deployment

Will this model work for my problem?

What problems to an�cipate?

52

Classic API Documenta�on
/**
 * compute deductions based on provided adjusted
 * gross income and expenses in customer data.
 *
 * see tax code 26 U.S. Code A.1.B, PART VI
 */
float computeDeductions(float agi, Expenses expenses);

53

What to document for models?

54

Documen�ng Input/Output Types for
Inference Components

From Google’s public .

{
 "mid": string,
 "languageCode": string,
 "name": string,
 "score": number,
 "boundingPoly": {
 object (BoundingPoly)
 }
}

object detec�on API
55

https://cloud.google.com/vision/docs/object-localizer

Documenta�on beyond I/O Types
Intended use cases, model capabili�es and limita�ons

Supported target distribu�on (vs precondi�ons)

Accuracy (various measures), incl. slices, fairness

Latency, throughput, availability (service level agreements)

Model quali�es such as explainability, robustness, calibra�on

Ethical considera�ons (fairness, safety, security, privacy)

Example for OCR model? How would you describe these?
56

Model Cards
Proposal and template for documenta�on from Google

Intended use, out-of-scope use
Training and evalua�on data
Considered demographic factors
Accuracy evalua�ons
Ethical considera�ons

1-2 page summary
Focused on fairness
Widely discussed, but not frequently adopted

Mitchell, Margaret, et al. " ." In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 2019.

Model cards for model repor�ng

57

https://arxiv.org/abs/1810.03993

Example from Model Cards paper
58

From: h�ps://modelcards.withgoogle.com/object-detec�on
59

https://modelcards.withgoogle.com/object-detection

FactSheets
Proposal and template for documenta�on from IBM; intended to communicate
intended quali�es and assurances

Longer list of criteria, including
Service inten�on, intended use
Technical descrip�on
Target distribu�on
Own and third-party evalua�on results
Safety and fairness considera�ons, explainability
Prepara�on for dri� and evolu�on
Security, lineage and versioning

Arnold, Ma�hew, et al. "
." IBM Journal of Research and Development 63, no. 4/5 (2019): 6-1.

FactSheets: Increasing trust in AI services through supplier's declara�ons of
conformity

60

https://arxiv.org/pdf/1808.07261.pdf

Recall: Correctness vs Fit
Without a clear specifica�on a model is difficult to document

Need documenta�on to allow evalua�on for fit

Descrip�on of target distribu�on is a key challenge

61

Design Pa�erns for AI
Enabled Systems
(no standardiza�on, yet)

62

Design Pa�erns are Codified Design
Knowl.
Vocabulary of design problems and solu�ons

Example: Observer pa�ern object-oriented design pa�ern describes a
solu�on how objects can be no�fied when another object changes

63

Common System Structures
Client-server architecture

Mul�-�er architecture

Service-oriented architecture and microservices

Event-based architecture

Data-flow architecture

64

Mul�-Tier Architecture

Based on: Yokoyama, Haruki. "Machine learning system architectural pa�ern for improving
opera�onal stability." In Int'l Conf. So�ware Architecture Companion, pp. 267-274. IEEE, 2019.

65

Microservices

(more later)
66

Pa�erns for ML-Enabled Systems
Stateless/serverless Serving Func�on Pa�ern
Feature-Store Pa�ern
Batched/precomuted serving pa�ern
Two-phase predic�on pa�ern
Batch Serving Pa�ern
Decouple-training-from-serving pa�ern

67

An�-Pa�erns
Big Ass Script Architecture
Dead Experimental Code Paths
Glue code
Mul�ple Language Smell
Pipeline Jungles
Plain-Old Datatype Smell
Undeclared Consumers

See also: � Washizaki, Hironori, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
" ." Dra�, 2019; � Sculley, et al. "

." In NeurIPS, 2015.
Machine Learning Architecture and Design Pa�erns Hidden

technical debt in machine learning systems
68

http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Summary
Model deployment seems easy, but involves many design decisions

What models to use?
Where to deploy?
How to design feature encoding and feature engineering?
How to compose with other components?
How to document?
How to collect telemetry?

Problem-specific modeling and analysis: Gather es�mates, consider design
alterna�ves, make tradeoffs explicit

Codifying design knowledge as pa�erns
69

Further Readings
� Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design pa�erns.
O’Reilly Media, 2020.
� Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. “Model cards for model
repor�ng.” In Proceedings of the conference on fairness, accountability, and transparency, pp.
220–229. 2019.
� Arnold, Ma�hew, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta,
Aleksandra Mojsilović, Ravi Nair, Karthikeyan Natesan Ramamurthy, Darrell Reimer, Alexandra
Olteanu, David Piorkowski, Jason Tsay, and Kush R. Varshney. “FactSheets: Increasing trust in AI
services through supplier’s declara�ons of conformity.” IBM Journal of Research and
Development 63, no. 4/5 (2019): 6–1.
� Yokoyama, Haruki. “Machine learning system architectural pa�ern for improving opera�onal
stability.” In 2019 IEEE Interna�onal Conference on So�ware Architecture Companion (ICSA-C),
pp. 267–274. IEEE, 2019.

70

Machine Learning in Produc�on/AI Engineering • Chris�an Kaestner & Sherry Wu, Carnegie Mellon University • Fall 2024

