
Machine Learning in Produc�onMachine Learning in Produc�on

Scaling Data Storage andScaling Data Storage and
Data ProcessingData Processing

1

Design and opera�ons

2

Readings
Required reading: � Nathan Marz. Big Data: Principles and best
prac�ces of scalable real�me data systems. Simon and Schuster,
2015. Chapter 1: A new paradigm for Big Data

Suggested watching: Molham Aref.
. Guest lecture, 2020.

Suggested reading: Mar�n Kleppmann.
. OReilly. 2017.

Business Systems with Machine
Learning

Designing Data-Intensive
Applica�ons

3

https://www.youtube.com/watch?v=_bvrzYOA8dY
https://dataintensive.net/

Learning Goals
Organize different data management solu�ons and their tradeoffs
Understand the scalability challenges involved in large-scale
machine learning and specifically deep learning
Explain the tradeoffs between batch processing and stream
processing and the lambda architecture
Recommend and jus�fy a design and corresponding technologies
for a given system

4

Case Study

5

Discuss possible architecture and when to predict (and update)
in may 2017: 500M users, uploading 1.2billion photos per day (14k/sec)
in Jun 2019 1 billion users

Speaker notes

Adding capacity

Stories of catastrophic success?

6

Data Management and
Processing in ML-Enabled
Systems

7

Kinds of Data
Training data
Input data
Telemetry data
(Models)

all poten�ally with huge total volumes and high throughput

need strategies for storage and processing

8

Data Management and Processing in ML-
Enabled Systems
Store, clean, and update training data

Learning process reads training data, writes model

Predic�on task (inference) on demand or precomputed

Individual requests (low/high volume) or large datasets?

O�en both learning and inference data heavy, high volume tasks

9

Scaling Computa�ons

Efficent Algorithms Faster Machines More Machines

10

Distributed Everything
Distributed data cleaning

Distributed feature extrac�on

Distributed learning

Distributed large predic�on tasks

Incremental predic�ons

Distributed logging and telemetry

11

Reliability and Scalability Challenges in AI-
Enabled Systems?

12

Distributed Systems and AI-Enabled
Systems

Learning tasks can take substan�al resources
Datasets too large to fit on single machine
Nontrivial inference �me, many many users
Large amounts of telemetry
Experimenta�on at scale
Models in safety cri�cal parts
Mobile compu�ng, edge compu�ng, cyber-physical systems

13

Reminder: T-Shaped People

Go deeper with: Mar�n Kleppmann.
. OReilly. 2017.

Designing Data-Intensive
Applica�ons

14

https://dataintensive.net/

Excursion: Distributed
Deep Learning with the
Parameter Server
Architecture

15

Recall: Backpropaga�on

16

Training at Scale is Challenging
Already 2012 at Google: 1TB-1PB of training data,
parameters

Need distributed training; learning is o�en a sequen�al problem

Just exchanging model parameters requires substan�al network
bandwidth

Fault tolerance essen�al (like batch processing), add/remove nodes

Tradeoff between convergence rate and system efficiency

−10
9

10
12

17

Distributed Gradient Descent

18

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Parameter Server Architecture

19

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Multiple parameter servers that each only contain a subset of the parameters, and multiple workers that each require only a subset of each

Ship only relevant subsets of mathematical vectors and matrices, batch communication

Resolve conflicts when multiple updates need to be integrated (sequential, eventually, bounded delay)

Run more than one learning algorithm simulaneously

Speaker notes

SysML Conference
Increasing interest in the systems aspects of machine learning

e.g., building large scale and robust learning infrastructure

h�ps://mlsys.org/

20

https://mlsys.org/

Data Storage Basics
Rela�onal vs document storage

1:n and n:m rela�ons

Storage and retrieval, indexes

Query languages and op�miza�on

21

Rela�onal Data Models
Photos:

photo_id user_id path upload_date size camera_id camera_se�ng

133422131 54351 /st/u211/1U6uFl47Fy.jpg 2021-12-03T09:18:32.124Z 5.7 663 ƒ/1.8; 1/120; 4.44mm; ISO271

133422132 13221 /st/u11b/MFxlL1FY8V.jpg 2021-12-03T09:18:32.129Z 3.1 1844 ƒ/2, 1/15, 3.64mm, ISO1250

133422133 54351 /st/x81/ITzhcSmv9s.jpg 2021-12-03T09:18:32.131Z 4.8 663 ƒ/1.8; 1/120; 4.44mm; ISO48

Users:
user_id account_name photos_total last_login

54351 ckaestne 5124 2021-12-
08T12:27:48.497Z

13221 eva.burk 3 2021-12-
21T01:51:54.713Z

Cameras:
camera_id manufacturer print_name

663 Google Google Pixel 5

1844 Motorola Motorola MotoG3

select p.photo_id, p.path, u.photos_total
from photos p, users u
where u.user_id p.user_id and u.account_name "ckaestne"= =

22

Document Data Models
{
 "_id": 133422131,
 "path": "/st/u211/1U6uFl47Fy.jpg",
 "upload_date": "2021-12-03T09:18:32.124Z",
 "user": {
 "account_name": "ckaestne",
 "account_id": "a/54351"
 },
 "size": "5.7",
 "camera": {
 "manufacturer": "Google",

db.getCollection('photos').find({ "user.account_name": "ckaes

23

Log files, unstructured data
02:49:12 127.0.0.1 GET /img13.jpg 200
02:49:35 127.0.0.1 GET /img27.jpg 200
03:52:36 127.0.0.1 GET /main.css 200
04:17:03 127.0.0.1 GET /img13.jpg 200
05:04:54 127.0.0.1 GET /img34.jpg 200
05:38:07 127.0.0.1 GET /img27.jpg 200
05:44:24 127.0.0.1 GET /img13.jpg 200
06:08:19 127.0.0.1 GET /img13.jpg 200

24

Tradeoffs

25

Data Encoding
Plain text (csv, logs)

Semi-structured, schema-free (JSON, XML)

Schema-based encoding (rela�onal, Avro, ...)

Compact encodings (protobuffer, ...)

26

Distributed Data Storage

27

Replica�on vs Par��oning

28

Par��oning

Divide data:
Horizontal par��oning:
Different rows in different
tables; e.g., movies by decade,
hashing o�en used
Ver�cal par��oning: Different
columns in different tables;
e.g., movie �tle vs. all actors

Tradeoffs?

29

Replica�on with Leaders and Followers

30

Replica�on Strategies: Leaders and
Followers
Write to leader, propagated synchronously or async.

Read from any follower

Elect new leader on leader outage; catchup on follower outage

Built in model of many databases (MySQL, MongoDB, ...)

Benefits and Drawbacks?

31

Recall: Google File System

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. " " ACM SIGOPS
opera�ng systems review. Vol. 37. No. 5. ACM, 2003.

The Google file system.

32

https://ai.google/research/pubs/pub51.pdf

Mul�-Leader Replica�on
Scale write access, add redundancy

Requires coordina�on among leaders
Resolu�on of write conflicts

Offline leaders (e.g. apps), collabora�ve edi�ng

33

Leaderless Replica�on
Client writes to mul�ple replica, propagate from there

Read from mul�ple replica (quorum required)
Repair on reads, background repair process

Versioning of entries (clock problem)

e.g. Amazon Dynamo, Cassandra, Voldemort

34

Transac�ons
Mul�ple opera�ons conducted as one, all or nothing

Avoids problems such as
dirty reads
dirty writes

Various strategies, including locking and op�mis�c+rollback

Overhead in distributed se�ng

35

Data Processing (Overview)
Services (online)

Responding to client requests as they come in
Evaluate: Response �me

Batch processing (offline)
Computa�ons run on large amounts of data
Takes minutes to days; typically scheduled periodically
Evaluate: Throughput

Stream processing (near real �me)
Processes input events, not responding to requests
Shortly a�er events are issued

36

Microservices

37

Microservices

Figure based on Christopher Meiklejohn.
. Blog Post 2021

Dynamic Reduc�on: Op�mizing Service-level Fault
Injec�on Tes�ng With Service Encapsula�on

38

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

Microservices
Independent, cohesive services

Each specialized for one task
Each with own data storage
Each independently scalable through mul�ple instances + load balancer

Remote procedure calls

Different teams can work on different services independently (even in different
languages)

But: Substan�al complexity from distributed system nature: various network
failures, latency from remote calls, ...

Avoid microservice complexity unless really needed for scalability
39

API Gateway Pa�ern
Central entry point, authen�ca�on, rou�ng, updates, ...

40

Batch Processing

41

Large Jobs
Analyzing TB of data, typically distributed storage
Filtering, sor�ng, aggrega�ng
Producing reports, models, ...

cat /var/log/nginx/access.log |
 awk '{print $7}' |
 sort |
 uniq -c |
 sort -r -n |
 head -n 5

42

43

file:///home/runner/work/s2023/s2023/lectures/_static/13_dataatscale/mapreduce.svg

Distributed Batch Processing
Process data locally at storage

Aggregate results as needed

Separate pluming from job logic

MapReduce as common framework

44

MapReduce -- Func�onal Programming
Style
Similar to shell commands: Immutable inputs, new outputs, avoid side
effects

Jobs can be repeated (e.g., on crashes)

Easy rollback

Mul�ple jobs in parallel (e.g., experimenta�on)

45

Machine Learning and MapReduce

46

Useful for big learning jobs, but also for feature extraction

Speaker notes

Dataflow Engines (Spark, Tez, Flink, ...)
Single job, rather than subjobs

More flexible than just map and reduce

Mul�ple stages with explicit dataflow between them

O�en in-memory data

Pluming and distribu�on logic separated

47

Key Design Principle: Data Locality

Data o�en large and distributed, code small

Avoid transfering large amounts of data

Perform computa�on where data is stored (distributed)

Transfer only results as needed

"The map reduce way"

Moving Computa�on is Cheaper than Moving Data -- Hadoop
Documenta�on

48

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#aMoving_Computation_is_Cheaper_than_Moving_Data

Stream Processing
Event-based systems, message passing style, publish subscribe

49

Stream Processing (e.g., Ka�a)

50

Messaging Systems
Mul�ple producers send messages to topic

Mul�ple consumers can read messages

-> Decoupling of producers and consumers

Message buffering if producers faster than consumers

Typically some persistency to recover from failures

Messages removed a�er consump�on or a�er �meout

Various error handling strategies (acknowledgements, redelivery, ...)
51

Common Designs
Like shell programs: Read from stream, produce output in other
stream. -> loose coupling

52

Stream Queries
Processing one event at a �me independently

vs incremental analysis over all messages up to that point

vs floa�ng window analysis across recent messages

Works well with probabilis�c analyses

53

Consumers
Mul�ple consumers share topic for scaling and load balancing

Mul�ple consumers read same message for different work

Par��oning possible

54

Design Ques�ons
Message loss important? (at-least-once processing)

Can messages be processed repeatedly (at-most-once processing)

Is the message order important?

Are messages s�ll needed a�er they are consumed?

55

Stream Processing and AI-enabled
Systems?

56

Process data as it arrives, prepare data for learning tasks, use models to annotate data, analytics

Speaker notes

Event Sourcing
Append only databases
Record edit events, never mutate data
Compute current state from all past events, can reconstruct old
state
For efficiency, take state snapshots
Similar to tradi�onal database logs, but persistent

addPhoto(id=133422131, user=54351, path="/st/u211/1U6uFl47Fy.j
updatePhotoData(id=133422131, user=54351, title="Sunset")
replacePhoto(id=133422131, user=54351, path="/st/x594/vipxBMFl
deletePhoto(id=133422131, user=54351)

57

Benefits of Immutability (Event Sourcing)
All history is stored, recoverable
Versioning easy by storing id of latest record
Can compute mul�ple views
Compare git

On a shopping website, a customer may add an item to their cart and then remove it
again. Although the second event cancels out the first event [...], it may be useful to
know for analy�cs purposes that the customer was considering a par�cular item but
then decided against it. Perhaps they will choose to buy it in the future, or perhaps
they found a subs�tute. This informa�on is recorded in an event log, but would be lost
in a database [...].

58

Drawbacks of Immutable Data

59

Storage overhead, extra complexity of deriving state
Frequent changes may create massive data overhead
Some sensitive data may need to be deleted (e.g., privacy, security)

Speaker notes

The Lambda Architecture

60

3 Layer Storage Architecture
Batch layer: best accuracy, all data, recompute periodically
Speed layer: stream processing, incremental updates, possibly
approximated
Serving layer: provide results of batch and speed layers to clients

Assumes append-only data

Supports tasks with widely varying latency

Balance latency, throughput and fault tolerance

61

Lambda Architecture and Machine
Learning

62

Data Lake
Trend to store all events in raw form (no consistent schema)

May be useful later

Data storage is comparably cheap

63

Data Lake
Trend to store all events in raw form (no consistent schema)

May be useful later

Data storage is comparably cheap

Bet: Yet unknown future value of data is greater than storage costs

64

Reasoning about Dataflows
Many data sources, many outputs, many copies

Which data is derived from what other data and how?

Is it reproducible? Are old versions archived?

How do you get the right data to the right place in the right format?

Plan and document data flows

65

66

67

https://youtu.be/_bvrzYOA8dY?t=1452

Breakout: Vimeo Videos
As a group, discuss and post in #lecture, tagging group members:

How to distribute storage:
How to design scalable copy-right protec�on solu�on:
How to design scalable analy�cs (views, ra�ngs, ...):

68

Excursion: ETL Tools
Extract, tranform, load

The data engineer's toolbox

69

Data Warehousing (OLAP)
Large denormalized databases with materialized views for large scale
repor�ng queries

e.g. sales database, queries for sales trends by region

Read-only except for batch updates: Data from OLTP systems loaded
periodically, e.g. over night

70

Image source:

Speaker notes

https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_Mart.jpg

https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_Mart.jpg

ETL: Extract, Transform, Load
Transfer data between data sources, o�en OLTP -> OLAP system
Many tools and pipelines

Extract data from mul�ple sources (logs, JSON, databases),
snapsho�ng
Transform: cleaning, (de)normaliza�on, transcoding, sor�ng,
joining
Loading in batches into database, staging

Automa�on, paralleliza�on, repor�ng, data quality checking,
monitoring, profiling, recovery
Many commercial tools

71

72

https://www.xplenty.com/

73

https://youtu.be/_bvrzYOA8dY?t=1452

Complexity of Distributed
Systems

74

75

Common Distributed System Issues
Systems may crash
Messages take �me
Messages may get lost
Messages may arrive out of order
Messages may arrive mul�ple �mes
Messages may get manipulated along the way
Bandwidth limits
Coordina�on overhead
Network par��on
...

76

Types of failure behaviors
Fail-stop
Other hal�ng failures
Communica�on failures

Send/receive omissions
Network par��ons
Message corrup�on

Data corrup�on
Performance failures

High packet loss rate
Low throughput, High latency

Byzan�ne failures
77

Common Assump�ons about Failures
Behavior of others is fail-stop
Network is reliable
Network is semi-reliable but asynchronous
Network is lossy but messages are not corrupt
Network failures are transi�ve
Failures are independent
Local data is not corrupt
Failures are reliably detectable
Failures are unreliably detectable

78

Strategies to Handle Failures
Timeouts, retry, backup services
Detect crashed machines (ping/echo, heartbeat)
Redundant + first/vo�ng
Transac�ons

Do lost messages ma�er?
Effect of resending message?

79

Test Error Handling
Recall: Tes�ng with stubs
Recall: Chaos experiments

80

Performance Planning and
Analysis

81

Performance Planning and Analysis
Ideally architectural planning upfront

Iden�fy key components and their interac�ons
Es�mate performance parameters
Simulate system behavior (e.g., queuing theory)

Exis�ng system: Analyze performance bo�lenecks
Profiling of individual components
Performance tes�ng (stress tes�ng, load tes�ng, etc)
Performance monitoring of distributed systems

82

Performance Analysis
What is the average wai�ng?

How many customers are wai�ng on average?

How long is the average service �me?

What are the chances of one or more servers being idle?

What is the average u�liza�on of the servers?

-> Early analysis of different designs for bo�lenecks

-> Capacity planning
83

Queuing Theory
Queuing theory deals with the analysis of lines where customers wait to receive a service

Wai�ng at Quiznos
Wai�ng to check-in at an airport
Kept on hold at a call center
Streaming video over the net
Reques�ng a web service

A queue is formed when request for services outpace the ability of the server(s) to service them
immediately

Requests arrive faster than they can be processed (unstable queue)
Requests do not arrive faster than they can be processed but their processing is delayed by some
�me (stable queue)

Queues exist because infinite capacity is infinitely expensive and excessive capacity is excessively
expensive

84

Queuing Theory

85

Analysis Steps (roughly)
Iden�fy system abstrac�on to analyze (typically architectural level,
e.g. services, but also protocols, datastructures and components,
parallel processes, networks)

Model connec�ons and dependencies

Es�mate latency and capacity per component (measurement and
tes�ng, prior systems, es�mates, …)

Run simula�on/analysis to gather performance curves

Evaluate sensi�vity of simula�on/analysis to various parameters
(‘what-if ques�ons’) 86

Simula�on (e.g., JMT)

G.Serazzi Ed. Performance Evalua�on Modelling with JMT: learning by examples. Politecnico di
Milano - DEI, TR 2008.09, 366 pp., June 2008

87

Profiling
Mostly used during development phase in single components

88

Performance Tes�ng
Load tes�ng: Assure handling of maximum expected load
Scalability tes�ng: Test with increasing load
Soak/spike tes�ng: Overload applica�on for some �me, observe
stability
Stress tes�ng: Overwhelm system resources, test graceful failure +
recovery

Observe (1) latency, (2) throughput, (3) resource use
All automateable; tools like JMeter

89

Performance Monitoring of Distr. Systems

Source: h�ps://blog.appdynamics.com/tag/fiserv/
90

file:///home/runner/work/s2023/s2023/lectures/_static/13_dataatscale/distprofiler.png
https://blog.appdynamics.com/tag/fiserv/

Performance Monitoring of Distributed
Systems

Instrumenta�on of (Service) APIs
Load of various servers
Typically measures: latency, traffic, errors, satura�on

Monitoring long-term trends
Aler�ng
Automated releases/rollbacks
Canary tes�ng and A/B tes�ng

91

Summary
Large amounts of data (training, inference, telemetry, models)
Distributed storage and computa�on for scalability
Common design pa�erns (e.g., batch processing, stream processing,
lambda architecture)
Design considera�ons: mutable vs immutable data
Distributed compu�ng also in machine learning
Lots of tooling for data extrac�on, transforma�on, processing
Many challenges through distribu�on: failures, debugging,
performance, ...

92

Further Readings
Molham Aref " " Invited Talk 2020
Sawadogo, Pegdwendé, and Jérôme Darmont. "

." Journal of Intelligent Informa�on Systems 56, no. 1
(2021): 97-120.
Warren, James, and Nathan Marz.

. Manning, 2015.
Smith, Jeffrey. . Manning, 2018.
Polyzo�s, Neoklis, Sudip Roy, Steven Euijong Whang, and Mar�n Zinkevich.
2017. “ .” In
Proceedings of the 2017 ACM Interna�onal Conference on Management of
Data, 1723–26. ACM.

Business Systems with Machine Learning
On data lake architectures and

metadata management

Big Data: Principles and best prac�ces of
scalable real�me data systems

Machine Learning Systems: Designs that Scale

Data Management Challenges in Produc�on Machine Learning

93

https://www.youtube.com/watch?v=_bvrzYOA8dY
https://hal.archives-ouvertes.fr/hal-03114365/
https://bookshop.org/books/big-data-principles-and-best-practices-of-scalable-realtime-data-systems/9781617290343
https://bookshop.org/books/machine-learning-systems-designs-that-scale/9781617293337
https://dl.acm.org/doi/pdf/10.1145/3035918.3054782

Machine Learning in Produc�on/AI Engineering • Chris�an Kaestner & Eunsuk Kang, Carnegie Mellon University • Spring 2023

