
Machine Learning in ProductionMachine Learning in Production

Model Testing beyondModel Testing beyond
AccuracyAccuracy
(Slicing, Capabilities, Invariants, Simulation, ...)(Slicing, Capabilities, Invariants, Simulation, ...)

1


Administrativa
VMs, team mentors...
A word on pull requests...

2


More model-level QA...

3


Learning Goals
Curate validation datasets for assessing model quality, covering
subpopulations and capabilities as needed
Explain the oracle problem and how it challenges testing of
software and models
Use invariants to check partial model properties with automated
testing
Select and deploy automated infrastructure to evaluate and
monitor model quality

4


Model Quality
First Part: Measuring Prediction Accuracy

the data scientist's perspective

Second Part: What is Correctness Anyway?
the role and lack of specifications, validation vs verification

Third Part: Learning from Software Testing 🠔
unit testing, test case curation, invariants, simulation (next lecture)

Later: Testing in Production
monitoring, A/B testing, canary releases (in 2 weeks)

5


, cc-by-nc 2.5 Randall MunroeXKCD 1838
6



https://xkcd.com/1838/

Curating Validation Data &
Input Slicing

7


Breakout Discussion
Write a few tests for the following program:

A test may look like:

As a group, discuss how you select tests. Discuss how many tests you need to feel confident.

Post answer to #lecture tagging group members in Slack using template:

def nextDate(year: Int, month: Int, day: Int) = ...

assert nextDate(2021, 2, 8) == (2021, 2, 9);

Selection strategy: ...
Test quantity: ...

8


Defining Software Testing
Program p with specification s
Test consists of

Controlled environment
Test call, test inputs
Expected behavior/output (oracle)

Testing is complete but unsound: Cannot guarantee the absence of
bugs

assertEquals(4, add(2, 2));
assertEquals(??, factorPrime(15485863));

9


How to Create Test Cases?
def nextDate(year: Int, month: Int, day: Int) = ...

10




Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on implementation

Will not randomly sample from distribution of all days

Speaker notes

The V-Model

11


Software Test Case Design
Opportunistic/exploratory testing: Add some unit tests, without much planning

Specification-based testing ("black box"): Derive test cases from specifications
Boundary value analysis
Equivalence classes
Combinatorial testing
Random testing

Structural testing ("white box"): Derive test cases to cover implementation paths
Line coverage, branch coverage
Control-flow, data-flow testing, MCDC, ...

Test execution usually automated, but can be manual too; automated generation
from specifications or code possible

12


Example: Boundary Value Testing
Analyze the specification, not the implementation!

Key Insight: Errors often occur at the boundaries of a variable value

For each variable select (1) minimum, (2) min+1, (3) medium, (4) max-
1, and (5) maximum; possibly also invalid values min-1, max+1

Example: nextDate(2015, 6, 13) = (2015, 6, 14)
Boundaries?

13


Example: Equivalence classes
Idea: Typically many values behave similarly, but some groups of
values are different

Equivalence classes derived from specifications (e.g., cases, input
ranges, error conditions, fault models)

Example nextDate(2015, 6, 13)
leap years, month with 28/30/31 days, days 1-28, 29, 30, 31

Pick 1 value from each group, combine groups from all variables

14


Exercise

suggest test cases based on boundary value analysis and equivalence
class testing

/** Compute the price of a bus ride:
 * - Children under 2 ride for free, children under 18 and
 * senior citizen over 65 pay half, all others pay the
 * full fare of $3.
 * - On weekdays, between 7am and 9am and between 4pm and
 * 7pm a peak surcharge of $1.5 is added.
 * - Short trips under 5min during off-peak time are free.*/
def busTicketPrice(age: Int,
 datetime: LocalDateTime,
 rideTime: Int)

15


Selecting Validation Data for Model
Quality?

16


Validation Data Representative?
Validation data should reflect usage data
Be aware of data drift (face recognition during pandemic, new
patterns in credit card fraud detection)
"Out of distribution" predictions often low quality (it may even be
worth to detect out of distribution data in production, more later)

(note, similar to requirements validation: did we hear all/representative
stakeholders)

17


Not All Inputs are Equal

"Call mom" "What's the weather tomorrow?" "Add asafetida to my
shopping list"

18


Not All Inputs are Equal
There Is a Racial Divide in Speech-Recognition Systems, Researchers Say:
Technology from Amazon, Apple, Google, IBM and Microsoft misidentified
35 percent of words from people who were black. White people fared
much better. -- NYTimes March 2020

19


https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html

Not All Inputs are Equal

20


Not All Inputs are Equal

A system to detect when somebody is at the door that never works
for people under 5ft (1.52m)
A spam filter that deletes alerts from banks

Consider separate evaluations for important subpopulations;
monitor mistakes in production

some random mistakes vs rare but biased mistakes?

21


Identify Important Inputs
Curate Validation Data for Specific Problems and Subpopulations:

Regression testing: Validation dataset for important inputs ("call
mom") -- expect very high accuracy -- closest equivalent to unit
tests
Uniformness/fairness testing: Separate validation dataset for
different subpopulations (e.g., accents) -- expect comparable
accuracy
Setting goals: Validation datasets for challenging cases or stretch
goals -- accept lower accuracy

22


Important Input Groups for Cancer
Prognosis?

23


Input Partitioning
Guide testing by identifying groups and analyzing accuracy of
subgroups

Often for fairness: gender, country, age groups, ...
Possibly based on business requirements or cost of mistakes

Slice test data by population criteria, also evaluate interactions
Identifies problems and plan mitigations, e.g., enhance with more
data for subgroup or reduce confidence

Good reading: Barash, Guy, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel
Zalmanovici. "Bridging the gap between ML solutions and their business requirements using feature

24


Input Partitioning Example

Input divided by movie age. Notice low
accuracy, but also low support (i.e., little
validation data), for old movies.

Input divided by genre, rating, and length.
Accuracy differs, but also amount of test data
used ("support") differs, highlighting low
confidence areas.

Source: Barash, Guy, et al. "Bridging the gap between ML solutions and their business requirements
using feature interactions." In Proc. FSE, 2019.

25


Input Partitioning Discussion
How to slice evaluation data for cancer prognosis?

26


Example: Model Impr. at Apple (Overton)

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "
." arXiv preprint arXiv:1909.05372 (2019).

Overton: A Data System
for Monitoring and Improving Machine-Learned Products

27


https://arxiv.org/abs/1909.05372

Example: Model Improvement at Apple
(Overton)

Focus engineers on creating training and validation data, not on
model search (AutoML)
Flexible infrastructure to slice telemetry data to identify
underperforming subpopulations -> focus on creating better
training data (better, more labels, in semi-supervised learning
setting)

28


Behavioral Testing
(Capabilities)

Further reading: Christian Kaestner. .
Toward Data Science, 2021.

Rediscovering Unit Testing: Testing Capabilities of ML Models

29


https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81

Testing Capabilities
Are there "concepts" or "capabilities" the model should learn?

Example capabilities of sentiment analysis:
Handle negation
Robustness to typos
Ignore synonyms and abbreviations
Person and location names are irrelevant
Ignore gender
...

For each capability create specific test set (multiple examples)

Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "
." In Proceedings ACL, p. 4902–4912. (2020).

Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList

30


https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

Testing Capabilities

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "
." In Proceedings ACL, p. 4902–4912. (2020).

Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList

31


https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

Testing Capabilities

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "
." In Proceedings ACL, p. 4902–4912. (2020).

Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList

32


https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

Examples of Capabilities
What could be capabilities of the cancer classifier?

33


Capabilities vs Specifications vs Slicing

34


Capabilities vs Specifications vs Slicing
Capabilities are partial specifications of expected behavior (not
expected to always hold)

Some capabilities correspond to slices of existing test data, for others
we may need to create new data

35


Recall: Is it fair to expect generalization
beyond training distribution?

Shall a cancer detector generalize to other hospitals? Shall image
captioning generalize to describing pictures of star formations?

36




We wouldn't test a first year elementary school student on high-school math. This would be "out of the training distribution"

Speaker notes

Recall: Shortcut Learning

Figure from: Geirhos, Robert, et al. " ." Nature Machine
Intelligence 2, no. 11 (2020): 665-673.

Shortcut learning in deep neural networks

37


https://arxiv.org/abs/2004.07780

More Shortcut Learning :)

Figure from Beery, Sara, Grant Van Horn, and Pietro Perona. “Recognition in terra incognita.” In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 456–473. 2018.

38


Generalization beyond Training
Distribution?

Typically training and validation data from same distribution (i.i.d. assumption!)
Many models can achieve similar accuracy
Models that learn "right" abstractions possibly indistinguishable from models
that use shortcuts

see tank detection example
Can we guide the model towards "right" abstractions?

Some models generalize better to other distributions not used in training
e.g., cancer images from other hospitals, from other populations
Drift and attacks, ...

39


Hypothesis: Testing Capabilities may help
with Generalization

Capabilities are "partial specifications", given beyond training data
Encode domain knowledge of the problem

Capabilities are inherently domain specific
Curate capability-specific test data for a problem

Testing for capabilities helps to distinguish models that use
intended abstractions
May help find models that generalize better

See discussion in D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak
Alipanahi, Alex Beutel, Christina Chen et al. "

." arXiv preprint arXiv:2011.03395 (2020).
Underspecification presents challenges for credibility

in modern machine learning
40



https://arxiv.org/abs/2011.03395

Strategies for identifying capabilities
Analyze common mistakes (e.g., classify past mistakes in cancer
prognosis)
Use existing knowledge about the problem (e.g., linguistics
theories)
Observe humans (e.g., how do radiologists look for cancer)
Derive from requirements (e.g., fairness)
Causal discovery from observational data?

41


Examples of Capabilities
What could be capabilities of image captioning system?

42


Generating Test Data for Capabilities
Idea 1: Domain-specific generators

Testing negation in sentiment analysis with template:
I {NEGATION} {POS_VERB} the {THING}.

Testing texture vs shape priority with artificial generated images:

43


Generating Test Data for Capabilities
Idea 2: Mutating existing inputs

Testing synonyms in sentiment analysis by replacing words with
synonyms, keeping label

Testing robust against noise and distraction add and false is not
true or random URLs to text

44


Generating Test Data for Capabilities
Idea 3: Crowd-sourcing test creation

Testing sarcasm in sentiment analysis: Ask humans to minimally
change text to flip sentiment with sarcasm

Testing background in object detection: Ask humans to take pictures
of specific objects with unusual backgrounds

45


Generating Test Data for Capabilities
Idea 4: Slicing test data

Testing negation in sentiment analysis by finding sentences containing
'not'

46


Examples of Capabilities
How to generate test data for capabilities of the cancer classifier?

47


Testing vs Training Capabilities
Dual insight for testing and training
Strategies for curating test data can also help select training data
Generate capability-specific training data to guide training (data
augmentation)

Further reading on using domain knowledge during training: Von Rueden, Laura, Sebastian Mayer,
Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. "Informed machine learning–towards a
taxonomy of explicit integration of knowledge into machine learning." Learning 18 (2019): 19-20.

48


Preliminary Summary: Specification-Based
Testing Techniques as Inspiration

Boundary value analysis
Partition testing & equivalence classes
Combinatorial testing
Decision tables

Use to identify datasets for subpopulations and capabilities, not
individual tests.

49


On Terminology
Test data curation is emerging as a very recent concept for testing
ML components
No consistent terminology

"Testing capabilities" in checklist paper
"Stress testing" in some others (but stress testing has a very
different meaning in software testing: robustness to overload)

Software engineering concepts translate, but names not adopted in
ML community

specification-based testing, black-box testing
equivalence class testing, boundary-value analysis

50


Testing Invariants with
Unlabeled Data
(random testing, if it wasn't for that darn oracle problem)

51


Random Test Input Generation is Easy

But is it useful?

@Test
void testNextDate() {
 nextDate(488867101, 1448338253, -997372169)
 nextDate(2105943235, 1952752454, 302127018)
 nextDate(1710531330, -127789508, 1325394033)
 nextDate(-1512900479, -439066240, 889256112)
 nextDate(1853057333, 1794684858, 1709074700)
 nextDate(-1421091610, 151976321, 1490975862)
 nextDate(-2002947810, 680830113, -1482415172)
 nextDate(-1907427993, 1003016151, -2120265967)
}

52


Cancer in Random Image?

53


Randomly Generating "Realistic" Inputs is
Possible

But how do we know whether the computation is correct?

@Test
void testNextDate() {
 nextDate(2010, 8, 20)
 nextDate(2024, 7, 15)
 nextDate(2011, 10, 27)
 nextDate(2024, 5, 4)
 nextDate(2013, 8, 27)
 nextDate(2010, 2, 30)
}

54


Automated Model Validation Data
Generation?

Realistic inputs?
But how do we get labels?

@Test
void testCancerPrediction() {
 cancerModel.predict(generateRandomImage())
 cancerModel.predict(generateRandomImage())
 cancerModel.predict(generateRandomImage())
}

55


The Oracle Problem
How do we know the expected output of a test?

assertEquals(??, factorPrime(15485863));

56


Test Case Generation & The Oracle
Problem

Manually construct input-output pairs (does not scale, cannot automate)
Comparison against gold standard (e.g., alternative implementation, executable
specification)
Checking of global properties only -- crashes, buffer overflows, code injections
Manually written assertions -- partial specifications checked at runtime

57


Manually constructing outputs
@Test
void testNextDate() {
 assert nextDate(2010, 8, 20) == (2010, 8, 21);
 assert nextDate(2024, 7, 15) == (2024, 7, 16);
 assert nextDate(2010, 2, 30) throws InvalidInputException;
}

@Test
void testCancerPrediction() {
 assert cancerModel.predict(loadImage("random1.jpg")) == true
 assert cancerModel.predict(loadImage("random2.jpg")) == true
 assert cancerModel.predict(loadImage("random3.jpg")) == fals
}

58


Compare against reference implementation
assuming we have a correct implementation

@Test
void testNextDate() {
 assert nextDate(2010, 8, 20) == referenceLib.nextDate(2010,
 assert nextDate(2024, 7, 15) == referenceLib.nextDate(2024,
 assert nextDate(2010, 2, 30) == referenceLib.nextDate(2010,
}

@Test
void testCancerPrediction() {
 assert cancerModel.predict(loadImage("random1.jpg")) == ???;
}

59


Checking global specifications
Ensure, no computation crashes

@Test
void testNextDate() {
 nextDate(2010, 8, 20)
 nextDate(2024, 7, 15)
 nextDate(2010, 2, 30)
}

@Test
void testCancerPrediction() {
 cancerModel.predict(generateRandomImage())
 cancerModel.predict(generateRandomImage())

60


Invariants as partial specification
class Stack {
 int size = 0;
 int MAX_SIZE = 100;
 String[] data = new String[MAX_SIZE];
 // class invariant checked before and after every method
 private void check() {
 assert(size>=0 && size<=MAX_SIZE);
 }
 public void push(String v) {
 check();
 if (size<MAX SIZE)

61


Automated Testing / Test Case Generation
/ Fuzzing

Many techniques to generate test cases
Dumb fuzzing: generate random inputs
Smart fuzzing (e.g., symbolic execution, coverage guided fuzzing):
generate inputs to maximally cover the implementation
Program analysis to understand the shape of inputs, learning from
existing tests
Minimizing redundant tests
Abstracting/simulating/mocking the environment

Typically looking for crashing bugs or assertion violations
62



Test Generation (Symbolic Execution)

Code: Paths:
: x=-2, y=0, z=2

: x=-2, y=0, z=0
: x=0, z=1, z=2

:
x=0, z=0, z=2

:
x=0, z=0, z=2

: x=0, z=0, z=0

void foo(a, b, c) {
 int x=0, y=0, z=0;
 if (a) x=-2;
 if (b<5) {
 if (!a && c) y=1;
 z=2;
 }
 assert(x+y+z!=3)
}

a ∧ (b < 5)
a ∧ ¬(b < 5)
¬a ∧ (¬a ∧ c)
¬a ∧ (b < 5) ∧ ¬(¬a ∧ c)

¬a ∧ (b < 5) ∧ ¬(¬a ∧ c)

¬a ∧ ¬(b < 5)

63




example source:

Speaker notes

http://web.cs.iastate.edu/~weile/cs641/9.SymbolicExecution.pdf

http://web.cs.iastate.edu/~weile/cs641/9.SymbolicExecution.pdf

Generating (Unlabled) Inputs for ML
Problems

Completely random data generation (uniform sampling from each feature's
domain)
Using knowledge about feature distributions (sample from each feature's
distribution)
Knowledge about dependencies among features and whole population
distribution (e.g., model with probabilistic programming language)
Mutate from existing inputs (e.g., small random modifications to select features)
Generate "fake data" with Generative Adversarial Networks
Production data

64


Invariants in Machine Learned Models
(Metamorphic Testing)
Exploit relationships between inputs

If two inputs differ only in X -> output should be the same
If inputs differ in Y output should be flipped
If inputs differ only in feature F, prediction for input with higher F
should be higher
...

65


Invariants in Machine Learned Models?

66


Some Capabilities are Invariants
Some capability tests can be expressed as invariants and
automatically encoded as transformations to existing test data

Negation should flip sentiment analysis result
Typos should not affect sentiment analysis result
Changes to locations or names should not affect sentiment analysis
results

67


Examples of Invariants
Credit rating should not depend on gender:

Synonyms should not change the sentiment of text:

Negation should swap meaning:

Robustness around training data:

Low credit scores should never get a loan (sufficient conditions for
classification, "anchors"):

Identifying invariants requires domain knowledge of the problem!

∀x. f(x[gender ← male]) = f(x[gender ← female])

∀x. f(x) = f(replace(x, "is not", "isn't"))

∀x ∈ "X is Y". f(x) = 1 − f(replace(x, " is ", " is not "))

∀x ∈ training data. ∀y ∈ mutate(x, δ). f(x) = f(y)

∀x. x. score < 649 ⇒ ¬f(x)

68


Metamorphic Testing
Formal description of relationships among inputs and outputs
(Metamorphic Relations)

In general, for a model and inputs define two functions to
transform inputs and outputs and such that:

e.g. and

f x
gI gO

∀x. f((x)) = (f(x))gI gO

(x) = replace(x, " is ", " is not ")gI (x) = ¬xgO

69


On Testing with Invariants/Assertions
Defining good metamorphic relations requires knowledge of the
problem domain
Good metamorphic relations focus on parts of the system
Invariants usually cover only one aspect of correctness -- maybe
capabilities
Invariants and near-invariants can be mined automatically from
sample data (see specification mining and anchors)

Further reading:
Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "

." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "

." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

A survey on
metamorphic testing

Anchors: High-precision model-
agnostic explanations

70


https://core.ac.uk/download/pdf/74235918.pdf
https://sameersingh.org/files/papers/anchors-aaai18.pdf

Invariant Checking aligns with
Requirements Validation

71


Approaches for Checking in Variants
Generating test data (random, distributions) usually easy
Transformations of existing test data
Adversarial learning: For many techniques gradient-based
techniques to search for invariant violations -- that's roughly
analogous to symbolic execution in SE
Early work on formally verifying invariants for certain models (e.g.,
small deep neural networks)

Further readings: Singh, Gagandeep, Timon Gehr, Markus Püschel, and Martin Vechev. "
." Proceedings of the ACM on Programming Languages 3, no.

POPL (2019): 1-30.

An abstract
domain for certifying neural networks

72


https://dl.acm.org/doi/pdf/10.1145/3290354

Using Invariant Violations

73


Simulation-Based Testing

74


One More Thing: Simulation-Based Testing
In some cases it is easy to go from outputs to inputs:

Similar idea in machine-learning problems?

assertEquals(??, factorPrime(15485862));

randomNumbers = [2, 3, 7, 7, 52673]
assertEquals(randomNumbers,
 factorPrime(multiply(randomNumbers)));

75


One More Thing: Simulation-Based Testing
Derive input-output pairs from simulation,
esp. in vision systems
Example: Vision for self-driving cars:

Render scene -> add noise -> recognize ->
compare recognized result with simulator
state

Quality depends on quality of simulator:
examples: render picture/video,
synthesize speech, ...
Less suitable where input-output
relationship unknown, e.g., cancer
prognosis, housing price prediction

Further readings: Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
"DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous
driving systems." In Proc. ASE. 2018. 76



Preliminary Summary: Invariants and
Generation

Generating sample inputs is easy, but knowing corresponding
outputs is not (oracle problem)
Crashing bugs are not a concern
Invariants + generated data can check capabilities or properties
(metamorphic testing)

Inputs can be generated realistically or to find violations
(adversarial learning)

If inputs can be computed from outputs, tests can be automated
(simulation-based testing)

77


On Terminology
Metamorphic testing is an academic software engineering term that's
not common in ML literature, it generalizes many concepts regularly
reinvented

Much of the security, safety and robustness literature in ML focuses
on invariants

78


Audits and Red Teaming

79


Other Testing Concepts

80


Test Coverage

81


Example: Structural testing

minimum set of test cases to cover all lines? all decisions? all path?

int divide(int A, int B) {
 if (A==0)
 return 0;
 if (B==0)
 return -1;
 return A / B;
}

82


Defining Structural Testing ("white box")
Test case creation is driven by the implementation, not the
specification
Typically aiming to increase coverage of lines, decisions, etc
Automated test generation often driven by maximizing coverage
(for finding crashing bugs)

83


Whitebox Analysis in ML
Several coverage metrics have been proposed

All path of a decision tree?
All neurons activated at least once in a DNN? (several papers
"neuron coverage")
Linear regression models??

Often create artificial inputs, not realistic for distribution
Unclear whether those are useful
Adversarial learning techniques usually more efficient at finding
invariant violations

84


Regression Testing
Whenever bug detected and fixed, add a test case
Make sure the bug is not reintroduced later
Execute test suite after changes to detect regressions

Ideally automatically with continuous integration tools

Maps well to curating test sets for important populations in ML

85


Mutation Analysis
Start with program and passing test suite
Automatically insert small modifications ("mutants") in the source
code
a+b -> a-b
a<b -> a<=b
...

Can program detect modifications ("kill the mutant")?
Better test suites detect more modifications ("mutation score")

int divide(int A, int B) {
 if (A==0) // A!=0, A<0, B==0
 return 0; // 1, -1

86


Mutation Analysis
Some papers exist, but strategy unclear
Mutating model parameters? Mutating hyperparameters? Mutating
inputs?
What's considered as killing a mutant, if we don't have
specifications?

Still unclear application...

87


Continuous Integration for
Model Quality

88


https://eng.uber.com/michelangelo/

Continuous Integration

89


Continuous Integration for Model Quality?

90


Continuous Integration for Model Quality
Testing script

Existing model: Automatically evaluate model on labeled training set;
multiple separate evaluation sets possible, e.g., for slicing, regressions
Training model: Automatically train and evaluate model, possibly using cross-
validation; many ML libraries provide built-in support
Report accuracy, recall, etc. in console output or log files
May deploy learning and evaluation tasks to cloud services
Optionally: Fail test below bound (e.g., accuracy <.9; accuracy < last accuracy)

Version control test data, model and test scripts, ideally also learning data and
learning code (feature extraction, modeling, ...)
Continuous integration tool can trigger test script and parse output, plot for
comparisons (e.g., similar to performance tests)
Optionally: Continuous deployment to production server

91


Dashboards for Model Evaluation Results

92


Specialized CI Systems

93


Dashboards for Comparing Models

94


Summary
Curating test data

Analyzing specifications, capabilities
Not all inputs are equal: Identify important inputs (inspiration from
specification-based testing)
Slice data for evaluation
Identifying capabilities and generating relevant tests

Automated random testing
Feasible with invariants (e.g. metamorphic relations)
Sometimes possible with simulation

Automate the test execution with continuous integration
95



Further readings
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "

." In Proc. ACL, pp. 856-865. 2018.
Barash, Guy, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel Zalmanovici.
"

." In Proc. FSE, pp. 1048-1058. 2019.
Ashmore, Rob, Radu Calinescu, and Colin Paterson. "

." arXiv preprint arXiv:1905.04223. 2019.
Christian Kaestner. . Toward Data
Science, 2021.
D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen et al. "

." arXiv preprint arXiv:2011.03395 (2020).
Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "

." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.

Semantically equivalent adversarial
rules for debugging NLP models

Bridging the gap between ML solutions and their business requirements using feature
interactions

Assuring the machine learning lifecycle:
Desiderata, methods, and challenges

Rediscovering Unit Testing: Testing Capabilities of ML Models

Underspecification presents challenges for credibility in modern machine
learning

A survey on
metamorphic testing

96


https://www.aclweb.org/anthology/P18-1079.pdf
https://dl.acm.org/doi/abs/10.1145/3338906.3340442
https://arxiv.org/abs/1905.04223
https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81
https://arxiv.org/abs/2011.03395
https://core.ac.uk/download/pdf/74235918.pdf

Machine Learning in Production/AI Engineering • Christian Kaestner & Claire Le Goues, Carnegie Mellon University • Spring 2024



