(Slicing, Capabilities, Invariants, Simulation, ...)

Administrativa

« VMs, team mentors...
« A word on pull requests...

More model-level QA...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance, Safety
versioning,
reproducibility

Security and
privacy

Fairness Interpretability
and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture

Learning Goals

« Curate validation datasets for assessing model quality, covering
subpopulations and capabilities as needed

« Explain the oracle problem and how it challenges testing of
software and models

« Use invariants to check partial model properties with automated
testing

o Select and deploy automated infrastructure to evaluate and
monitor model quality

Model Quality

First Part: Measuring Prediction Accuracy
« the data scientist's perspective

Second Part: What is Correctness Anyway?
 the role and lack of specifications, validation vs verification

Third Part: Learning from Software Testing
« unit testing, test case curation, invariants, simulation (nhext lecture)

Later: Testing in Production
_ « monitoring, A/B testing, canary releases (in 2 weeks)

THIS 1S YOUR MACHINE LEARNING SYSTET1?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT I THE ANSLERS ARE WJRONG?)

JUST STIR THE PILE DNTIL
THEY START [OOKING RIGHT.

= XKCD 1838, cc-by-nc 2.5 Randall Munroe

https://xkcd.com/1838/

Curating Validation Data &
Input Slicing

Breakout Discussion

Write a few tests for the following program:

def nextDate(year: Int, month: Int, day: Int) = ...

A test may look like:

assert nextDate(2021, 2, 8) == (2021, 2, 9);

As a group, discuss how you select tests. Discuss how many tests you need to feel confident.

Post answer to #lecture tagging group members in Slack using template:

Selection strategy: ...
Test quantity: ...

Defining Software Testing

« Program p with specification s
o Test consists of
» Controlled environment
» Test call, test inputs
= Expected behavior/output (oracle)

assertEquals(4, add(2, 2));

asserteEquals(??, factorPrime(15485863));

Testing is complete but unsound: Cannot guarantee the absence of
bugs

How to Create Test Cases?

def nextDate(year: Int, month: Int, day: Int) = ...

Speaker notes

Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on implementation

Will not randomly sample from distribution of all days

The V-Model

System validation plan

Requirements

analysis

Integration test plan

System testing /

testing in production

Architectural design === s m i m e Integration testing

Unit test plan

Low-level design === Unit testing

Implementation

Software Test Case Design

Opportunistic/exploratory testing: Add some unit tests, without much planning

Specification-based testing ("black box"): Derive test cases from specifications

o Boundary value analysis
o Equivalence classes

o« Combinatorial testing

« Random testing

Structural testing ("white box"): Derive test cases to cover implementation paths

e Line coverage, branch coverage
o Control-flow, data-flow testing, MCDC(, ...

Test execution usually automated, but can be manual too; automated generation
= from specifications or code possible

Example: Boundary Value Testing

Analyze the specification, not the implementation!
Key Insight: Errors often occur at the boundaries of a variable value

For each variable select (1) minimum, (2) min+1, (3) medium, (4) max-
1, and (5) maximum; possibly also invalid values min-1, max+1

Example: nextDate (2015, 6, 13) = (2015, 6, 14)
 Boundaries?

Example: Equivalence classes

Idea: Typically many values behave similarly, but some groups of
values are different

Equivalence classes derived from specifications (e.g., cases, input
ranges, error conditions, fault models)

Example nextDate (2015, 6, 13)
 leap years, month with 28/30/31 days, days 1-28, 29, 30, 31

Pick 1 value from each group, combine groups from all variables

Exercise

def busTicketPrice(age: Int,
datetime: LocalDateTime,
rideTime: Int)

suggest test cases based on boundary value analysis and equivalence
class testing

Selecting Validation Data for Model

Validation Data Representative?

« Validation data should reflect usage data

« Be aware of data drift (face recognition during pandemic, new
patterns in credit card fraud detection)

 "Out of distribution" predictions often low quality (it may even be
worth to detect out of distribution data in production, more later)

(note, similar to requirements validation: did we hear all/representative
stakeholders)

Not All Inputs are Equal

"Call mom" "What's the weather tomorrow?" "Add asafetida to my
_ shopping list"

Not All Inputs are Equal

There Is a Racial Divide in Speech-Recognition Systems, Researchers Say:
Technology from Amazon, Apple, Google, IBM and Microsoft misidentified
35 percent of words from people who were black. White people fared
much better. -- NYTimes March 2020

https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html

Not All Inputs are Equal

http://bit.ly/2tvCCPK

THE MAGIC ROUNDABOUT

Ring road
Cirencester
A4289 \

@@

== =
o Marlborough
TO‘Z'" @ Burford
Cenire Oxford

.

http://bit.ly/2top1KD
https://dailym.ai/2K7kNS§

Not All Inputs are Equal

some random mistakes vs rare but biased mistakes?

o A system to detect when somebody is at the door that never works
for people under 5ft (1.52m)
o A spam filter that deletes alerts from banks

Consider separate evaluations for important subpopulations;
monitor mistakes in production

|ldentify Important Inputs

Curate Validation Data for Specific Problems and Subpopulations:

« Regression testing: Validation dataset for important inputs ("call
mom") -- expect very high accuracy -- closest equivalent to unit
tests

o Uniformness/fairness testing: Separate validation dataset for
different subpopulations (e.g., accents) -- expect comparable
accuracy

o Setting goals: Validation datasets for challenging cases or stretch
goals -- accept lower accuracy

Important Input Groups for Cancer
Prognosis?

Input Partitioning

o Guide testing by identifying groups and analyzing accuracy of
subgroups
» Often for fairness: gender, country, age groups, ...
» Possibly based on business requirements or cost of mistakes

o Slice test data by population criteria, also evaluate interactions

o Identifies problems and plan mitigations, e.g., enhance with more
data for subgroup or reduce confidence

Good reading: Barash, Guy, Eitan Farchi, llan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel
= Zalmanovici. "Bridging the gap between ML solutions and their business requirements using feature

Input Partiioning Example

DECADE SUPPORT ACC MAIN_GENRE RAT CAT LEN_CAT SUPPORT ACC

Mystery OK long 11 72.72

1910s 38 78.94 Fantasy OK short 36 77.77

1930s 338 87.87 Crime OK long 100 81.00

19905 3007 90.95 Comedy GOOD long 55 96.36
2000s 6192 91.40

Input divided by genre, rating, and length.

Input divided by movie age. Notice low Accuracy differs, but also amount of test data
accuracy, but also low support (i.e., little used ("support") differs, highlighting low
validation data), for old movies. confidence areas.

Source: Barash, Guy, et al. "Bridging the gap between ML solutions and their business requirements
— using feature interactions.” In Proc. FSE, 2019.

Input Partitioning Discussion

How to slice evaluation data for cancer prognosis?

Example: Model Impr. at Apple (Overton)

Schema

Payloads + Tasks

(specified once)

@ é) ® =]

Combine
Supervision

Train &
Tune Models

S sion D . Actions Fine-grained
@ : quality reports
: task 1 | task 2
: @ Add/augment slices slice1| v v
=] - A Add labeling functions </———— SI!CQ |2 *
JSON . slice3| v v
— : Add synthetic examples sliceda: % v

Create
Deployable Model

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "Overton: A Data System
— for Monitoring and Improving Machine-Learned Products." arXiv preprint arXiv:1909.05372 (2019).

https://arxiv.org/abs/1909.05372

Example: Model Improvement at Apple
(Overton)

e Focus engineers on creating training and validation data, not on

model search (AutoML)
o Flexible infrastructure to slice telemetry data to identify

underperforming subpopulations -> focus on creating better
training data (better, more labels, in semi-supervised learning
setting)

Behavioral Testing
(Capabilities)

Further reading: Christian Kaestner. Rediscovering Unit Testing: Testing Capabilities of ML Models.
— Toward Data Science, 2021.

https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81

Testing Capabilities
Are there "concepts" or "capabilities" the model should learn?

Example capabilities of sentiment analysis:

« Handle negation

e Robustness to typos

o Ignore synonyms and abbreviations

o Person and location names are irrelevant
e Ignore gender

For each capability create specific test set (multiple examples)

Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:
— Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

Testing Capabilities

INV: Add randomly generated 0.6 134 248 114 @]JetBlue that selfie was extreme. @pi9QDK INV
Robust URLSs and handles to tweets ’ ' ’ ’ @united stuck because staff took a break? Not happy 1K.... https://t.co/PWKI1jb INV

INV: Swap one character with @JetBlue » @JeBtlue I cri INV
its neighbor (typo) -6 102 10452 3.8 @SouthwestAir no thanks - thakns INV
INV: Switching locations 70 208 148 76 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV

% should not change predictions ' ') ’ " @VirginAmerica I miss the #nerdbird in San Jose + Denver INV

= INV: Switching person names 24 151 01 66 24 ...Airport agents were horrendous. Sharon + Erin was your saviour INV
should not change predictions ' ' : ’ "’ @united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

Testing Capabilities

The food is not poor. pos or neutral
It isn’t a lousy customer service. pos or neutral

MEFT: Negated negative should
be positive or neutral

MFT: Negated neutral should
still be neutral

18.8° 542 294 132 2.6

This aircraft is not private. neutral
This is not an international flight. neutral

404 396 742 984 954

Negation

I thought the plane would be awful, but it wasn’t. pos or neutral
I thought I would dislike that plane, but I didn’t. pos or neutral

MFT: Negation of negative at

the end, should be pos. or neut. 100.0 90.4 100.0 84.8 7.2

I wouldn’t say, given it’s a Tuesday, that this pilot was great. neg
I don’t think, given my history with airplanes, that this is an amazing staff. neg

MFT: Negated positive with

neutral content in the middle 98.4 100.0 100.0 74.0 30.2

MFT: Author sentiment is more Some people think you are excellent, but I think you are nasty. neg
important than of others 44 624 63.0 338 300 Some people hate you, but I think you are exceptional. pos

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

Examples of Capabilities

What could be capabilities of the cancer classifier?

Capabilities vs Specifications vs Slicing

Capabilities vs Specifications vs Slicing

Capabilities are partial specifications of expected behavior (not
expected to always hold)

Some capabilities correspond to slices of existing test data, for others
we may need to create new data

Recall: Is it fair to expect generalization
beyond training distribution?

Shall a cancer detector generalize to other hospitals? Shall image
captioning generalize to describing pictures of star formations?

Speaker notes

We wouldn't test a first year elementary school student on high-school math. This would be "out of the training distribution”

Recall: Shortcut Learning

w *
ML KON
A A A A B B B B

Categorisation by (typical) human Categorisation by Neural Network

training set
with labels A or B

I.i.d. test set

0.0.d. test set

Figure from: Geirhos, Robert, et al. "Shortcut learning in deep neural networks." Nature Machine
— Intelligence 2, no. 11 (2020): 665-673.

https://arxiv.org/abs/2004.07780

More Shortcut Learning :)

(A) Cow: 0.99, Pasture: (B) No Person: (.99, Water: (C) No Person: 0.07,
0.99, Grass: 0.99, No Person: (.95, Beach: .97, Outdoors: Mammeal: 0.96, Water: (1.94,
0.95, Mammal: 0.95 0.97, Seashore: .97 Beach: (LO4, Two: 0,04

Figure from Beery, Sara, Grant Van Horn, and Pietro Perona. “Recognition in terra incognita.” In
= Proceedings of the European Conference on Computer Vision (ECCV), pp. 456-473. 2018.

Generalization beyond Training
Distribution?

« Typically training and validation data from same distribution (i.i.d. assumption!)
o« Many models can achieve similar accuracy
o Models that learn "right" abstractions possibly indistinguishable from models
that use shortcuts
» see tank detection example
» Can we guide the model towards "right" abstractions?
o Some models generalize better to other distributions not used in training
= e.g., cancer images from other hospitals, from other populations
» Drift and attacks, ...

Hypothesis: Testing Capabilities may help
with Generalization

o Capabilities are "partial specifications", given beyond training data
« Encode domain knowledge of the problem
= Capabilities are inherently domain specific
» Curate capability-specific test data for a problem
« Testing for capabilities helps to distinguish models that use
iIntended abstractions
« May help find models that generalize better

See discussion in D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak
Alipanahi, Alex Beutel, Christina Chen et al. "Underspecification presents challenges for credibility
_ in modern machine learning." arXiv preprint arXiv:2011.03395 (2020).

https://arxiv.org/abs/2011.03395

Strategies for identifying capabilities

« Analyze common mistakes (e.g., classify past mistakes in cancer
pPrognosis)

« Use existing knowledge about the problem (e.g., linguistics
theories)

« Observe humans (e.g., how do radiologists look for cancer)

« Derive from requirements (e.g., fairness)

o Causal discovery from observational data?

Examples of Capabilities

What could be capabilities of image captioning system?

Algorithm

Caption

I The man at bat readies to swing at the

pitch while the umpire looks on.

Generating Test Data for Capabilities

Idea 1: Domain-specific generators

Testing negation in sentiment analysis with template:
I {NEGATION} {POS_VERB} the {THING}.

Testing texture vs shape priority with artificial generated images:

() Texture image (b} Content image

{¢) Texture-shape cue conflict
81.4% Indian elephant 71.1% tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri

8.2% black swan 3.3% Siamese cat 9.6% black swan

Generating Test Data for Capabilities

Idea 2: Mutating existing inputs

Testing synonyms in sentiment analysis by replacing words with
synonyms, keeping label

Testing robust against noise and distraction add and false 1s not
true or random URLs to text

Generating Test Data for Capabilities

Idea 3: Crowd-sourcing test creation

Testing sarcasm in sentiment analysis: Ask humans to minimally
change text to flip sentiment with sarcasm

Testing background in object detection: Ask humans to take pictures
of specific objects with unusual backgrounds

Recasting fact as hoped for The world of Atlantis, hidden beneath the earth’s core, is fantastic
The world of Atlantis, hidden beneath the earth’s core is supposed
to be fantastic

Suggesting sarcasm thoroughly captivating thriller-drama, taking a deep and real-
istic view
thoroughly mind numbing *‘thriller-drama™, taking a “‘deep™
and “realistic” (who are they kidding?) view

Inserting modifiers The presentation of simply Atlantis™ landscape and setting
The presentation of Atlantis” predictable landscape and setting

Generating Test Data for Capabilities

Idea 4: Slicing test data

Testing negation in sentiment analysis by finding sentences containing
'not’

Actions Fine-grained

| quality reports

E task 1 | task 2

E @ Add/augment slices & slice 1] v
<= fx Add labeling functions <——— S|fce 2| v x
L slice3| v v
— E Add synthetic examples lice 4! % v

Examples of Capabilities

How to generate test data for capabilities of the cancer classifier?

Testing vs Training Capabilities

e Dual insight for testing and training

o Strategies for curating test data can also help select training data

« Generate capability-specific training data to guide training (data
augmentation)

Further reading on using domain knowledge during training: Von Rueden, Laura, Sebastian Mayer,
Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. "Informed machine learning-towards a
_ taxonomy of explicit integration of knowledge into machine learning." Learning 18 (2019): 19-20.

Preliminary Summary: Specification-Based
Testing Techniques as Inspiration

« Boundary value analysis

« Partition testing & equivalence classes
« Combinatorial testing

« Decision tables

Use to identify datasets for subpopulations and capabilities, not
individual tests.

On Terminology

ML components
« No consistent terminology
» "Testing capabilities” in checklist paper
= "Stress testing" in some others (but stress testing has a very
different meaning in software testing: robustness to overload)
o Software engineering concepts translate, but names not adopted in
ML community
» specification-based testing, black-box testing
= equivalence class testing, boundary-value analysis

Testing Invariants with
Unlabeled Data

(random testing, if it wasn't for that darn oracle problem)

Random Test Input Generation is Easy

volid testNextDate() {
nextDate (488867101, 1448338253, -997372169)
nextDate (2105943235, 1952752454, 302127018)
nextDate (1710531330, -127789508, 1325394033)
nextDate(-1512900479, -439066240, 889256112)
nextDate (1853057333, 1794684858, 1709074700)
nextDate(-1421091610, 151976321, 1490975862)
nextDate(-2002947810, 680830113, -1482415172)
nextDate(-1907427993, 1003016151, -2120265967)

But is it useful?

Cancer in Random Image?

Randomly Generating "Realistic” Inputs is
Possible

volid testNextDate() {
nextDate(2010, 8, 20)
nextDate(2024, 7, 15)
nextDate(2011, 10, 27)
nextDate (2024, 5, 4)
nextDate(2013, 8, 27)
nextDate (2010, 2, 30)

But how do we know whether the computation is correct?

Automated Model Validation Data
Generation?

void testCancerPrediction() {
cancerModel.predict(generateRandomImage())

cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())

}

« Realistic inputs?
« But how do we get labels?

The Oracle Problem

How do we know the expected output of a test?

assertkEquals(??, factorPrime(15485863));

Test Case Generation & The Oracle
Problem

e Manually construct input-output pairs (does not scale, cannot automate)

« Comparison against gold standard (e.g., alternative implementation, executable
specification)

o Checking of global properties only -- crashes, buffer overflows, code injections

o Manually written assertions -- partial specifications checked at runtime

Parameters Fail Parameters Assertions

Input
generator

Normal
— Crash

Comparator Pass Input =~ qUT

generator

Golden

standard

Manually constructing outputs

void testNextDate() {
assert nextbDate(2010, 8, 20) == (2010, 8, 21);
assert nextbDate(2024, 7, 15) == (2024, 7, 16);
assert nextDate(2010, 2, 30) throws InvalidInputException;

}

vold testCancerPrediction() {
assert cancerModel.predict(loadImage(
assert cancerModel.predict(loadImage(
assert cancerModel.predict(loadImage(

}

Compare against reference implementation

assuming we have a correct implementation

vold testNextDate() {
assert nextbDate(2010, 8, 20) == referencelLib.nextDate(2010,
assert nextbDate(2024, 7, 15) == referencelLib.nextDate(2024,
assert nextbDate(2010, 2, 30) == referencelLib.nextDate(2010,

}

vold testCancerPrediction() {
assert cancerModel.predict(loadImage(

}

Checking global specifications

Ensure, no computation crashes

vold testNextDate() {
nextDate(2010, 8, 20)
nextDate(2024, 7, 15)
nextDate(2010, 2, 30)

}

vold testCancerPrediction() {
cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())

Invariants as partial specification

class Stack {
int size = 0;
int MAX_SIZE = 100:
String[] data new String[MAX_SIZE],

private void check() {
assert(size>=0 && size<=MAX_SIZE),

}

public void push(String v) {
check();
1f (size<MAX SIZE

Automated Testing / Test Case Generation
/ Fuzzing

« Many techniques to generate test cases

« Dumb fuzzing: generate random inputs

« Smart fuzzing (e.g., symbolic execution, coverage guided fuzzing):
generate inputs to maximally cover the implementation

o Program analysis to understand the shape of inputs, learning from
existing tests

e Minimizing redundant tests

« Abstracting/simulating/mocking the environment

— « Jypically looking for crashing bugs or assertion violations

Test Generation (Symbolic Execution)

Code: Paths:
e a A (b<b):x=-2,y=0,z=2
volid foo(a, b, c) { . — = _ _

int xob, v, 2=8: a N\ —(b < 5):x=-2,y=0, z=0
if (a) x=-2; e @ N\ (_ICL/\C)IX=O, z=1, z=2
if (b<5) { e ma A (b<5)A—(—aAc):

if ('a && c) y=1; x=0. 7=0. 7=2

z2=2, ’ ’
\ e ma N (b<5)A—=(—aAec):
assert(x+y+z!1=3) x=0, z=0, z=2

« =a N\ —(b < 5): x=0, z=0, z=0

Speaker notes

example source: http://web.cs.iastate.edu/~weile/cs641/9.SymbolicExecution.pdf

http://web.cs.iastate.edu/~weile/cs641/9.SymbolicExecution.pdf

Generating (Unlabled) Inputs for ML
Problems

« Completely random data generation (uniform sampling from each feature's
domain)

e Using knowledge about feature distributions (sample from each feature's
distribution)

o Knowledge about dependencies among features and whole population
distribution (e.g., model with probabilistic programming language)

« Mutate from existing inputs (e.g., small random modifications to select features)

o Generate "fake data" with Generative Adversarial Networks

e Production data

Invariants in Machine Learned Models
(Metamorphic Testing)

Exploit relationships between inputs

o If two inputs differ only in X -> output should be the same
o If inputs differ in Y output should be flipped

o If inputs differ only in feature F, prediction for input with higher F
should be higher

Invariants in Machine Learned Models?

Some Capabilities are Invariants

Some capability tests can be expressed as invariants and
automatically encoded as transformations to existing test data

o Negation should flip sentiment analysis result
o Typos should not affect sentiment analysis result

« Changes to locations or names should not affect sentiment analysis

results

INV: Add randomly generated

@JetBlue that selfie was extreme. @pi9QDK INV

should not change predictions

Robust URLs and handles to tweets 96 134 243 114 74 @united stuck because staff took a break? Not happy 1K.... https://t.co/PWKI1jb INV
INV: Swap one character with @JetBlue » @JeBtlue I cri INV
its neighbor (typo) 5.6 102 104 52 38 @SouthwestAir no thanks -+ thakns INV
INV: Switching locations 70 208 148 7.6 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV
% should not change predictions ' ' : ’ " @VirginAmerica I miss the #nerdbird in San Jose + Denver INV
= INV: Switching person names ra 151 91 66 24 ...Airport agents were horrendous. Sharon + Erin was your saviour INV

@united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

Examples of Invariants

o Credit rating should not depend on gender:

« Vx. f(x|gender < male|) = f(x[gender < female|)
Synonyms should not change the sentiment of text:

« Vx. f(x) = f(replace(x,”is not”, ’isn’t”))

Negation should swap meaning:

« Ve € "X isY”. f(x) =1 — f(replace(z,” is”,” isnot 7))
Robustness around training data:

» Vo € training data. Vy € mutate(z,d). f(z) = f(y)

Low credit scores should never get a loan (sufficient conditions for
classification, "anchors"):

« V. z.score < 649 = —f(x)

|dentifying invariants requires domain knowledge of the problem!

Metamorphic Testing

Formal description of relationships among inputs and outputs
(Metamorphic Relations)

In general, for a model f and inputs x define two functions to
transform inputs and outputs gy and gp such that:

vz. f(g1(z)) = go(f(z))

e.g. gr(x) = replace(z,” is”,” isnot ”) and go(x) = —x

On Testing with Invariants/Assertions

« Defining good metamorphic relations requires knowledge of the
problem domain

« Good metamorphic relations focus on parts of the system

 Invariants usually cover only one aspect of correctness -- maybe
capabilities

 Invariants and near-invariants can be mined automatically from
sample data (see specification mining and anchors)

Further reading:

o Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "A survey on
metamorphic testing." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.

e Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Anchors: High-precision model-
agnostic explanations." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

https://core.ac.uk/download/pdf/74235918.pdf
https://sameersingh.org/files/papers/anchors-aaai18.pdf

Invariant Checking alighs with
Requirements Validation

Approaches for Checking in Variants

« Generating test data (random, distributions) usually easy

o Transformations of existing test data

o Adversarial learning: For many techniques gradient-based
techniques to search for invariant violations -- that's roughly
analogous to symbolic execution in SE

« Early work on formally verifying invariants for certain models (e.g.,
small deep neural networks)

Further readings: Singh, Gagandeep, Timon Gehr, Markus Puschel, and Martin Vechev. "An abstract
domain for certifying neural networks." Proceedings of the ACM on Programming Languages 3, no.
— POPL (2019): 1-30.

https://dl.acm.org/doi/pdf/10.1145/3290354

Using Invariant Violations

Simulation-Based Testing

One More Thing: Simulation-Based Testing
In some cases it is easy to go from outputs to inputs:

assertkEquals(??, factorPrime(15485862));

randomNumbers = [2, 3, 7, 7, 52673]
asserteEquals(randomNumbers,
factorPrime(multiply(randomNumbers)));

Similar idea in machine-learning problems?

One More Thing: Simulation-Based Testing

o Derive input-output pairs from simulation,
esp. in vision systems Simulation
o Example: Vision for self-driving cars:
= Render scene -> add noise -> recognize ->
compare recognized result with simulator
state
o Quality depends on quality of simulator:
= examples: render picture/video, Prediction
synthesize speech, ...
= Less suitable where input-output

relationship unknown, e.g., cancer
prognosis, housing price prediction

Further readings: Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
— "DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous
~ driving systems." In Proc. ASE. 2018.

Preliminary Summary: Invariants and
Generation

o Generating sample inputs is easy, but knowing corresponding
outputs is not (oracle problem)

« Crashing bugs are not a concern

 Invariants + generated data can check capabilities or properties
(metamorphic testing)

= |[nputs can
(adversaria
o If iInputs can

ne generated realistically or to find violations
learning)

ne computed from outputs, tests can be automated

(simulation-based testing)

On Terminology

Metamorphic testing is an academic software engineering term that's
not common in ML literature, it generalizes many concepts regularly

reinvented

Much of the security, safety and robustness literature in ML focuses
on invariants

Audits and Red Teaming

1 ﬁf#:?:}[

Other Testing Concepts

Test Coverage

Example: Structural testing

int divide(int A, int B) {
1f (A==0)
return 0;
1f (B==0)

return -1;
return A / B;

}

minimum set of test cases to cover all lines? all decisions? all path?

Defining Structural Testing ("white box")

o Test case creation is driven by the implementation, not the
specification

« Typically aiming to increase coverage of lines, decisions, etc

« Automated test generation often driven by maximizing coverage
(for finding crashing bugs)

Whitebox Analysis in ML

« Several coverage metrics have been proposed
= All path of a decision tree?
= All neurons activated at least once in a DNN? (several papers
"neuron coverage")
» Linear regression models??
o Often create artificial inputs, not realistic for distribution
o Unclear whether those are useful
« Adversarial learning techniques usually more efficient at finding
invariant violations

Regression Testing

« Whenever bug detected and fixed, add a test case
o Make sure the bug is not reintroduced later
o Execute test suite after changes to detect regressions
» |deally automatically with continuous integration tools

o Maps well to curating test sets for important populations in ML

Mutation Analysis

o Start with program and passing test suite

« Automatically insert small modifications ("mutants") in the source
code
» at+tb -> a-b
» a<b -> a<=Db

« Can program detect modifications ("kill the mutant")?

« Better test suites detect more modifications ("mutation score")

int divide(int A, int B) {
1f (A==0)

return 0;

Mutation Analysis

« Some papers exist, but strategy unclear

o Mutating model parameters? Mutating hyperparameters? Mutating
inputs?

« What's considered as killing a mutant, if we don't have
specifications?

o Still unclear application...

Continuous Integration for
Model Quality

8-19-06-29-22-855-UTC

PERFORMANCE MODEL VIS FEATURES

Test Data Performance

0.288

Precision-Recall

0.7936

reliability

0.4907 2l

ROC

FPR 0252
TPR 208

The reliability diagram shows how reliable (or “well-calibrated’)
the model's probability estimates are when evaluated on the
test data. For example, A well calibrated (binatry) model should
classify the samples such that among the samples to which it
gives a probability close to 0.8 of belonging to the positive
class, approximately 80% of those samples actually belong to
the positive class.

A Perfectly Calibrated Model
This Model (Before Calibration)
= This Model (After Calibration)

Confusion Matrix

052
44549 Samples

88

https://eng.uber.com/michelangelo/

Continuous Integration

Continuous Integration for Model Quality?

Continuous Integration for Model Quality

e Testing script
» Existing model: Automatically evaluate model on labeled training set;
multiple separate evaluation sets possible, e.g., for slicing, regressions
= Training model: Automatically train and evaluate model, possibly using cross-
validation; many ML libraries provide built-in support
» Report accuracy, recall, etc. in console output or log files
= May deploy learning and evaluation tasks to cloud services
= Optionally: Fail test below bound (e.g., accura