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A�er requirements...
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Learning Goals
Describe the role of architecture and design between requirements
and implementa�on
Iden�fy the different ML components and organize and priori�ze
their quality concerns for a given project
Explain they key ideas behind decision trees and random forests
and analyze consequences for various quali�es
Demonstrate an understanding of the key ideas of deep learning
and how it drives quali�es
Plan and execute an evalua�on of the quali�es of alterna�ve AI
components for a given purpose
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Readings
Required reading: Hulten, Geoff. "Building Intelligent Systems: A
Guide to Machine Learning Engineering." (2018), Chapters 17 and 18

Recommended reading: Siebert, Julien, Lisa Joeckel, Jens Heidrich,
Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and
Mikio Aoyama. “Towards Guidelines for Assessing Quali�es of
Machine Learning Systems.” In Interna�onal Conference on the
Quality of Informa�on and Communica�ons Technology, pp. 17–31.
Springer, Cham, 2020.
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Recall: ML is a Component
in a System in an
Environment
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ML components for
transcrip�on model, pipeline to
train the model, monitoring
infrastructure...
Non-ML components for data
storage, user interface,
payment processing, ...
User requirements and
assump�ons

System quality vs model
quality
System requirements vs model
requirements 6





Recall: Systems Thinking

A system is a set of inter-related components that work together in a
par�cular environment to perform whatever func�ons are required to
achieve the system's objec�ve -- Donella Meadows
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Thinking like a So�ware
Architect
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From Requirements to Implementa�ons...
We know what to build, but how? How to we meet the quality goals?

So�ware architecture: Key design decisions, made early in the
development, focusing on key product quali�es

Architectural decisions are hard to change later
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So�ware Architecture
The so�ware architecture of a program or compu�ng system is the
structure or structures of the system, which comprise so�ware elements,
the externally visible proper�es of those elements, and the rela�onships
among them. -- Kazman et al. 2012
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https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar


Architecture Decisions: Examples
What are the major components in the system? What does each
component do?
Where do the components live? Monolithic vs microservices?
How do components communicate to each other? Synchronous vs
asynchronous calls?
What API does each component publish? Who can access this API?
Where does the ML inference happen? Client-side or server-side?
Where is the telemetry data collected from the users stored?
How large should the user database be? Centralized vs
decentralized?
...and many others
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So�ware Architecture
Architecture represents the set of significant design decisions that shape
the form and the func�on of a system, where significant is measured by
cost of change. -- [Grady Booch, 2006]
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How much Architecture/Design?

So�ware Engineering Theme: Think before you code

Like requirements: Slower ini�ally, but upfront investment can
prevent problems later and save overall costs

-> Focus on most important quali�es early, but leave flexibility
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Quality Requirements Drive Architecture
Design
Driven by requirements, iden�fy most important quali�es

Examples:
Development cost, opera�onal cost, �me to release
Scalability, availability, response �me, throughput
Security, safety, usability, fairness
Ease of modifica�ons and updates
ML: Accuracy, ability to collect data, training latency
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Architecture Design Involves Quality
Trade-offs

Q. What are quality trade-offs between the two?
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Why Architecture? ( )
Represents earliest design decisions.

Aids in communica�on with stakeholders: Shows them “how” at a level they can understand, raising
ques�ons about whether it meets their needs

Defines constraints on implementa�on: Design decisions form “load-bearing walls” of applica�on

Dictates organiza�onal structure: Teams work on different components

Inhibits or enables quality a�ributes: Similar to design pa�erns

Supports predic�ng cost, quality, and schedule: Typically by predic�ng informa�on for each
component

Aids in so�ware evolu�on: Reason about cost, design, and effect of changes

Kazman et al. 2012
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https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar


Case Study: Twi�er
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Source and additional reading: Raffi.  Twitter Blog, 2013

Speaker notes

New Tweets per second record, and how!

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html


Twi�er - Caching Architecture
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Running one of the world’s largest Ruby on Rails installations
200 engineers
Monolithic: managing raw database, memcache, rendering the site, and * presenting the public APIs in one codebase
Increasingly difficult to understand system; organizationally challenging to manage and parallelize engineering teams
Reached the limit of throughput on our storage systems (MySQL); read and write hot spots throughout our databases
Throwing machines at the problem; low throughput per machine (CPU + RAM limit, network not saturated)
Optimization corner: trading off code readability vs performance

Speaker notes



Twi�er's Redesign Goals
Performance

Improve median latency; lower outliers
Reduce number of machines 10x

Reliability
Isolate failures

Maintainability
"We wanted cleaner boundaries with “related” logic being in one place":
encapsula�on and modularity at the systems level (vs class/package level)

Modifiability
Quicker release of new features: "run small and empowered engineering teams
that could make local decisions and ship user-facing changes, independent of
other teams"
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Twi�er: Redesign Decisions
Ruby on Rails -> JVM/Scala
Monolith -> Microservices
RPC framework with
monitoring, connec�on
pooling, failover strategies,
loadbalancing, ... built in
New storage solu�on,
temporal clustering, "roughly
sortable ids"
Data driven decision making
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Twi�er Case Study: Key Insights
Architectural decisions affect en�re systems, not only individual
modules

Abstract, different abstrac�ons for different scenarios

Reason about quality a�ributes early

Make architectural decisions explicit

Ques�on: Did the original architect make poor decisions?
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Codifying Design Knowledge
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System Decomposi�on

Iden�fy components and their responsibili�es

Establishes interfaces and team boundaries
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Common Components in ML-based Systems
Model inference service: Uses model to make predic�ons for input
data
ML pipeline: Infrastructure to train/update the model
Monitoring: Observe model and system
Data sources: Manual/crowdsourcing/logs/telemetry/...
Data management: Storage and processing of data, o�en at scale
Feature store: Reusable feature engineering code, cached feature
computa�ons
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Common System-Wide Design Challenges
Separa�ng concerns, understanding interdependencies

e.g., an�cipa�ng/breaking feedback loops, conflic�ng needs of
components

Facilita�ng experimenta�on, updates with confidence

Separa�ng training and inference; closing the loop
e.g., collec�ng telemetry to learn from user interac�ons

Learn, serve, and observe at scale or with resource limits
e.g., cloud deployment, embedded devices
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Each system is different...
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Each system is different...
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Each system is different...
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Each system is different...
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System Decomposi�on
Each system is different, iden�fy important components

Examples:
Personalized music recommenda�ons: microservice deployment in cloud,
logging of user ac�vity, nightly batch processing for inference, regular model
updates, regular experimenta�on, easy fallback
Transcrip�on service: irregular user interac�ons, large model, expensive
inference, inference latency not cri�cal, rare model updates
Autonomous vehicle: on-board hardware sets limits, real-�me needs, safety
cri�cal, updates necessary, limited experimenta�on in prac�ce, not always
online
Smart keyboard: privacy focused, small model, federated learning on user
device, limited telemetry
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Common System Structures
Designers and architects accumulate tacit and codified knowledge
based on their own experience and best prac�ces.

In designing a new system, it is best to start with experience and a
design vocabulary, focusing directly on the specific quali�es relevant
to the tradeoffs.

At the highest level of organizing components, there are common
structures shared by many systems, also known as architectural styles.
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Monolithic system
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Client-Server Architecture

A server provides func�onality to mul�ple clients, typically over a network connec�on.
Resources shared for many users, while clients are fairly simple.
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Mul�-�er architecture

Higher �ers send requests to lower �ers, but not vice versa.

Common for business and web applica�ons.
34







can be conceptually extended with components related to machine learning (as we will show in chapter Deploying a Model).

Speaker notes



SOA and microservices

Mul�ple self-contained services/processes that communicate via
RPC. 35







allows independent deployment, versioning, and scaling of services and flexible routing of requests at the network level. Many modern, scalable web-based systems use
this design, as we will discuss in chapter Scaling the System. Also independent development.

Speaker notes



Event-based architecture

Individual system components listen to messages broadcasted by
other components, typically through some message bus.
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Since the component publishing a message does not need to know who consumes it, this architecture strongly decouples components in a system and makes it easy to
add new components. We will see this architecture style when discussing stream processing systems in chapter Scaling the System.

Speaker notes



Data-flow architectures

Dataflow program composed of shell commands.

The system is organized around data, o�en in a sequen�al pipeline.
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This design allows flexible changes of components and flexible composition of pipelines from different subsets of components. Unix shell commands can be composed
through pipes to perform more complex tasks and machine-learning pipelines often follow this design of multiple transformations to a dataset arranged in a sequence or
directed acyclic graph. Machine-learning pipelines tend to follow this data-flow style, as do batch processing systems for very large datasets.

Speaker notes



Design Pa�erns

Design pa�erns name and
describe common solu�ons to
known design problems, and
known advantages and pi�alls.

Historically popular in OO; now
applied broadly across system
design, both architecturally and
at a lower level (i.e., interac�ons
among subsystems).
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Observer or publish-subscribe

Intent: Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are no�fied and updated automa�cally.
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Motivation: [This would include an illustrative example of a user interface that needs to update multiple visual representations of data whenever input data changes, such as
multiple diagrams in a spreadsheet.] Solution: [This would include a description of the technical structure with an observer interface implemented by observers and an
observable object managing a list of observers and calling them on state changes.] Benefits, costs, tradeoffs: Decoupling of the observed object and observers; support of
broadcast communication. Implementation overhead; observed objects unaware of consequences and costs of broadcast objects. [Typically this would be explained in
more detail with examples.]

Speaker notes



Architectural pa�ern: Heartbeat tac�c

Intent: Detect when a component is unavailable to trigger mi�ga�ons
or repair
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Motivation: Detect with low latency when a component or server becomes unavailable to automatically restart it or redirect traffic. Solution: The observed component sends
heartbeat messages to another component monitoring the system in regular predictable intervals. When the monitoring component does not receive the message it
assumes the observed component is unavailable and initiates corrective actions. Options: The heartbeat message can carry data to be processed. Standard data
messages can stand in for heartbeat messages so that extra messages are only sent when no regular data messages are sent for a period. Benefits, costs, tradeoffs:
Component operation can be observed. Only unidirectional messaging is needed. The observed component defines heartbeat frequency and thus detection latency and
network overhead. Higher detection latency can be achieved at the cost of higher network traffic with more frequent messages; higher confidence in detection can be
achieved at the cost of lower latency by waiting for multiple missing messages. Alternatives: Ping/echo tactic where the monitoring component requests responses. Source:

Speaker notes

https://www.se.rit.edu/~swen-440/slides/instructor-specific/Kuehl/Lecture%2019%20Design%20Tactics.pdf

https://www.se.rit.edu/~swen-440/slides/instructor-specific/Kuehl/Lecture%2019%20Design%20Tactics.pdf


Machine learning pa�ern for reproducibility: Feature
Store

Intent: Reuse features across projects by decoupling feature crea�on
from model development and serving
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Source:  Motivation: The same feature engineering code is needed during model training and model serving;
inconsistencies are dangerous. In addition, some features may be expensive to compute but useful in multiple projects. Also, data scientists often need the same or similar
features across multiple projects, but often lack a systematic mechanism for reuse. Solution: Separate feature engineering code and reuse it both in the training pipeline
and the model inference infrastructure. Catalog features with metadata to make them discoverable. Cache computed features used in multiple projects. Typically
implemented in open-source infrastructure projects. Benefits: Reusable features across projects; avoiding redundant feature computations; preventing training-serving
skew; central versioning of features; separation of concerns. Costs: Nontrivial infrastructure; extra engineering overhead in data science projects. This concept is discussed
in more depth in chapter Deploying a Model.

Speaker notes

https://changyaochen.github.io/ML-design-pattern-1/

https://changyaochen.github.io/ML-design-pattern-1/


Scoping Relevant Quali�es
of ML Components
From System Quality Requirements to Component Quality
Specifica�ons
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AI = DL?
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Design Decision: ML Model Selec�on
How do I decide which ML algorithm to use for my project?

Criteria: Quality A�ributes & Constraints
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Accuracy is not Everything
Beyond predic�on accuracy, what quali�es may be relevant for an ML
component?

45






Collect qualities on whiteboard

Speaker notes



Quali�es of Interest?
Scenario: ML component for transcribing audio files
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here?

Cost per transaction; how much does it cost to transcribe? How much do we make?

Speaker notes



Quali�es of Interest?
Scenario: Component for detec�ng lane markings in a vehicle
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here?

Realtime use

Speaker notes



Quali�es of Interest?
Scenario: Component for detec�ng credit card frauds, as a service for
banks
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Very high volume of transactions, low cost per transaction, frequent updates

Incrementality

Speaker notes



Common ML Quali�es to Consider
Accuracy
Correctness guarantees? Probabilis�c guarantees (--> symbolic AI)
How many features?
How much data needed? Data quality important?
Incremental training possible?
Training �me, memory need, model size -- depending on training
data volume and feature size
Inference �me, energy efficiency, resources needed, scalability
Interpretability, explainability
Robustness, reproducibility, stability
Security, privacy, fairness
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Constraints and Tradeoffs
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How do I decide which ML algorithm to use for my project?

Criteria: Quality Attributes & Constraints

Speaker notes



Constraints
Constraints define the space of a�ributes for valid design solu�ons
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Design space exploration: The space of all possible designs (dotted rectangle) is reduced by several constraints on qualities of the system, leaving only a subset of designs
for further consideration (highlighted center area).

Speaker notes



Types of Constraints
Problem constraints: Minimum required QAs for an acceptable
product

Project constraints: Deadline, project budget, available
personnel/skills

Design constraints
Type of ML task required (regression/classifica�on)
Available data
Limits on compu�ng resources, max. inference cost/�me
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Constraints: Cancer Prognosis?
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Constraints: Music Recommenda�ons?
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Trade-offs between ML algorithms
If there are mul�ple ML algorithms that sa�sfy the given constraints,
which one do we select?

Different ML quali�es may conflict with each other; this requires
making a trade-off between these quali�es

Among the quali�es of interest, which one(s) do we care the most
about?

And which ML algorithm is most suitable for achieving those
quali�es?
(Similar to requirements conflicts)
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Common ML Algorithms
and their Quali�es
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Linear Regression

Tasks: Regression
Quali�es: Advantages: ?? Drawbacks: ??
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Easy to interpret, low training cost, small model size
Can't capture non-linear relationships well

Speaker notes



Decision Trees
Tasks: Classifica�on &
regression
Quali�es: Advantages: ??
Drawbacks: ??
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Building:

Identify all possible decisions
Select the decision that best splits the dataset into distinct outcomes (typically via entropy or similar measure)
Repeatedly further split subsets, until stopping criteria reached
random forests do the same but with multiple trees, prediction of multiple trees

Speaker notes



Neural Networks + Deep Learning
Simula�ng biological neural networks of neurons (nodes) and synapses (connec�ons). Basic building
blocks: Ar�ficial neurons, in layers.

Deep learning: more layers, different numbers of neurons. Different kinds of connec�ons.

Advantages ?? Drawbacks??
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Artificial neural networks are inspired by how biological neural networks work ("groups of chemically connected or functionally associated neurons" with synapses forming
connections)

High accuracy; can capture a wide range of problems (linear & non-linear)
Difficult to interpret; high training costs (time & amount of data required, hyperparameter tuning)

From "Texture of the Nervous System of Man and the Vertebrates" by Santiago Ramón y Cajal, via

Speaker notes

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg


Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes
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Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10
output classes
28x28 = 784 inputs in input layers (each 0..255)
Example model with 3 layers, 300, 100, and 10 neurons

How many parameters does this model have?

model = keras.models.Sequential([
  keras.layers.Flatten(input_shape=[28, 28]),
  keras.layers.Dense(300, activation="relu"),
  keras.layers.Dense(100, activation="relu"),
  keras.layers.Dense(10, activation="softmax")
])
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Example Scenario

Total of 266,610 parameters in this small example! (Assuming float
types, that's 1 MB)

model = keras.models.Sequential([
  keras.layers.Flatten(input_shape=[28, 28]),
  # 784*300+300 = 235500 parameter
  keras.layers.Dense(300, activation="relu"), 
  # 300*100+100 = 30100 parameters
  keras.layers.Dense(100, activation="relu"),
  # 100*10+10 = 1010 parameters
  keras.layers.Dense(10, activation="softmax")
])
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Network Size
50 Layer ResNet network -- classifying 224x224 images into 1000 categories

26 million weights, computes 16 million ac�va�ons during inference, 168
MB to store weights as floats

Google in 2012(!): 1TB-1PB of training data, 1 billion to 1 trillion parameters
OpenAI’s GPT-2 (2019) -- text genera�on

48 layers, 1.5 billion weights (~12 GB to store weights)
released model reduced to 117 million weights
trained on 7-8 GPUs for 1 month with 40GB of internet text from 8 million
web pages

OpenAI’s GPT-3 (2020): 96 layers, 175 billion weights, 700 GB in memory,
$4.6M in approximate compute cost for training
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https://lambdalabs.com/blog/demystifying-gpt-3/

https://lambdalabs.com/blog/demystifying-gpt-3/


Cost & Energy Consump�on
Consump�on CO2

(lbs)

Air travel, 1 passenger,
NY↔SF

1984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avg incl. fuel, 1
life�me

126,000

Training one model (GPU) CO2
(lbs)

NLP pipeline (parsing,
SRL)

39

w/ tuning &
experimenta�on

78,468

Transformer (big) 192

w/ neural architecture
search

626,155

64




Cost & Energy Consump�on
Model Hardware Hours CO2 Cloud cost in USD
Transformer P100x8 84 192 289–981

ELMo P100x3 336 262 433–1472

BERT V100x64 79 1438 3751–13K

NAS P100x8 274,120 626,155 943K–3.2M

GPT-2 TPUv3x32 168 — 13K–43K

GPT-3 — 4.6M

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "
." In Proc. ACL, pp. 3645-3650. 2019.

Energy and Policy Considera�ons for
Deep Learning in NLP
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https://arxiv.org/pdf/1906.02243.pdf


Trade-offs: Cost vs Accuracy

"We evaluated some of the new
methods offline but the addi�onal
accuracy gains that we measured
did not seem to jus�fy the
engineering effort needed to bring
them into a produc�on
environment.”

Amatriain & Basilico. , Ne�lix Technology Blog (2012)Ne�lix Recommenda�ons: Beyond the 5 stars
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https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429


Trade-offs: Accuracy vs Interpretability

Q. Examples where one is more important than the other?

Bloom & Brink. ,
Presenta�on at O'Reilly Strata Conference (2014).

Overcoming the Barriers to Produc�on-Ready Machine Learning Workflows
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https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314


Breakout: Quali�es & ML Algorithms
Consider two scenarios:
1. Credit card fraud detec�on
2. Pedestrian detec�on in sidewalk robot

As a group, post to #lecture tagging all group members:

Quali�es of interests: ??
Constraints: ??
ML algorithm(s) to use: ??
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Summary
So�ware architecture focuses on early key design decisions, focused
on key quali�es

Between requirements and implementa�on

Decomposing the system into components, many ML components

Many quali�es of interest, define metrics and opera�onalize

Constraints and tradeoff analysis for selec�ng ML techniques in
produc�on ML se�ngs
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Further Readings
Bass, Len, Paul Clements, and Rick Kazman. So�ware architecture in prac�ce. Addison-Wesley Professional, 3rd edi�on, 2012.
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Conference on So�ware Architecture Companion (ICSA-C), pp. 267–274. IEEE, 2019.
Serban, Alex, and Joost Visser. “An Empirical Study of So�ware Architecture for Machine Learning.” In Proceedings of the Interna�onal
Conference on So�ware Analysis, Evolu�on and Reengineering (SANER), 2022.
Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design pa�erns. O’Reilly Media, 2020.
Lewis, Grace A., Ipek Ozkaya, and Xiwei Xu. “So�ware Architecture Challenges for ML Systems.” In 2021 IEEE Interna�onal Conference
on So�ware Maintenance and Evolu�on (ICSME), pp. 634–638. IEEE, 2021.
Vogelsang, Andreas, and Markus Borg. “Requirements Engineering for Machine Learning: Perspec�ves from Data Scien�sts.” In Proc. of
the 6th Interna�onal Workshop on Ar�ficial Intelligence for Requirements Engineering (AIRE), 2019.
Habibullah, Khan Mohammad, Gregory Gay, and Jennifer Horkoff. "

." arXiv preprint arXiv:2203.11063 (2022).
Non-Func�onal Requirements for Machine Learning: An Explora�on

of System Scope and Interest
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