
Machine Learning in ProductionMachine Learning in Production

Toward Architecture andToward Architecture and
DesignDesign

1


After requirements...

2


Learning Goals
Describe the role of architecture and design between requirements
and implementation
Identify the different ML components and organize and prioritize
their quality concerns for a given project
Explain they key ideas behind decision trees and random forests
and analyze consequences for various qualities
Demonstrate an understanding of the key ideas of deep learning
and how it drives qualities
Plan and execute an evaluation of the qualities of alternative AI
components for a given purpose

3


Readings
Required reading: Hulten, Geoff. "Building Intelligent Systems: A
Guide to Machine Learning Engineering." (2018), Chapters 17 and 18

Recommended reading: Siebert, Julien, Lisa Joeckel, Jens Heidrich,
Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and
Mikio Aoyama. “Towards Guidelines for Assessing Qualities of
Machine Learning Systems.” In International Conference on the
Quality of Information and Communications Technology, pp. 17–31.
Springer, Cham, 2020.

4


Recall: ML is a Component
in a System in an
Environment

5


ML components for
transcription model, pipeline to
train the model, monitoring
infrastructure...
Non-ML components for data
storage, user interface,
payment processing, ...
User requirements and
assumptions

System quality vs model
quality
System requirements vs model
requirements 6



Recall: Systems Thinking

A system is a set of inter-related components that work together in a
particular environment to perform whatever functions are required to
achieve the system's objective -- Donella Meadows

7


Thinking like a Software
Architect

8


From Requirements to Implementations...
We know what to build, but how? How to we meet the quality goals?

Software architecture: Key design decisions, made early in the
development, focusing on key product qualities

Architectural decisions are hard to change later
9



Software Architecture
The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them. -- Kazman et al. 2012

10


https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

Architecture Decisions: Examples
What are the major components in the system? What does each
component do?
Where do the components live? Monolithic vs microservices?
How do components communicate to each other? Synchronous vs
asynchronous calls?
What API does each component publish? Who can access this API?
Where does the ML inference happen? Client-side or server-side?
Where is the telemetry data collected from the users stored?
How large should the user database be? Centralized vs
decentralized?
...and many others

11


Software Architecture
Architecture represents the set of significant design decisions that shape
the form and the function of a system, where significant is measured by
cost of change. -- [Grady Booch, 2006]

12


How much Architecture/Design?

Software Engineering Theme: Think before you code

Like requirements: Slower initially, but upfront investment can
prevent problems later and save overall costs

-> Focus on most important qualities early, but leave flexibility
13



Quality Requirements Drive Architecture
Design
Driven by requirements, identify most important qualities

Examples:
Development cost, operational cost, time to release
Scalability, availability, response time, throughput
Security, safety, usability, fairness
Ease of modifications and updates
ML: Accuracy, ability to collect data, training latency

14


Architecture Design Involves Quality
Trade-offs

Q. What are quality trade-offs between the two?
15



Why Architecture? ()
Represents earliest design decisions.

Aids in communication with stakeholders: Shows them “how” at a level they can understand, raising
questions about whether it meets their needs

Defines constraints on implementation: Design decisions form “load-bearing walls” of application

Dictates organizational structure: Teams work on different components

Inhibits or enables quality attributes: Similar to design patterns

Supports predicting cost, quality, and schedule: Typically by predicting information for each
component

Aids in software evolution: Reason about cost, design, and effect of changes

Kazman et al. 2012

16


https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

Case Study: Twitter

17




Source and additional reading: Raffi. Twitter Blog, 2013

Speaker notes

New Tweets per second record, and how!

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

Twitter - Caching Architecture

18




Running one of the world’s largest Ruby on Rails installations
200 engineers
Monolithic: managing raw database, memcache, rendering the site, and * presenting the public APIs in one codebase
Increasingly difficult to understand system; organizationally challenging to manage and parallelize engineering teams
Reached the limit of throughput on our storage systems (MySQL); read and write hot spots throughout our databases
Throwing machines at the problem; low throughput per machine (CPU + RAM limit, network not saturated)
Optimization corner: trading off code readability vs performance

Speaker notes

Twitter's Redesign Goals
Performance

Improve median latency; lower outliers
Reduce number of machines 10x

Reliability
Isolate failures

Maintainability
"We wanted cleaner boundaries with “related” logic being in one place":
encapsulation and modularity at the systems level (vs class/package level)

Modifiability
Quicker release of new features: "run small and empowered engineering teams
that could make local decisions and ship user-facing changes, independent of
other teams"

19


Twitter: Redesign Decisions
Ruby on Rails -> JVM/Scala
Monolith -> Microservices
RPC framework with
monitoring, connection
pooling, failover strategies,
loadbalancing, ... built in
New storage solution,
temporal clustering, "roughly
sortable ids"
Data driven decision making

20


Twitter Case Study: Key Insights
Architectural decisions affect entire systems, not only individual
modules

Abstract, different abstractions for different scenarios

Reason about quality attributes early

Make architectural decisions explicit

Question: Did the original architect make poor decisions?

21


Codifying Design Knowledge

22


System Decomposition

Identify components and their responsibilities

Establishes interfaces and team boundaries
23



Common Components in ML-based Systems
Model inference service: Uses model to make predictions for input
data
ML pipeline: Infrastructure to train/update the model
Monitoring: Observe model and system
Data sources: Manual/crowdsourcing/logs/telemetry/...
Data management: Storage and processing of data, often at scale
Feature store: Reusable feature engineering code, cached feature
computations

24


Common System-Wide Design Challenges
Separating concerns, understanding interdependencies

e.g., anticipating/breaking feedback loops, conflicting needs of
components

Facilitating experimentation, updates with confidence

Separating training and inference; closing the loop
e.g., collecting telemetry to learn from user interactions

Learn, serve, and observe at scale or with resource limits
e.g., cloud deployment, embedded devices

25


Each system is different...

26


Each system is different...

27


Each system is different...

28


Each system is different...

29


System Decomposition
Each system is different, identify important components

Examples:
Personalized music recommendations: microservice deployment in cloud,
logging of user activity, nightly batch processing for inference, regular model
updates, regular experimentation, easy fallback
Transcription service: irregular user interactions, large model, expensive
inference, inference latency not critical, rare model updates
Autonomous vehicle: on-board hardware sets limits, real-time needs, safety
critical, updates necessary, limited experimentation in practice, not always
online
Smart keyboard: privacy focused, small model, federated learning on user
device, limited telemetry

30


Common System Structures
Designers and architects accumulate tacit and codified knowledge
based on their own experience and best practices.

In designing a new system, it is best to start with experience and a
design vocabulary, focusing directly on the specific qualities relevant
to the tradeoffs.

At the highest level of organizing components, there are common
structures shared by many systems, also known as architectural styles.

31


Monolithic system

32


Client-Server Architecture

A server provides functionality to multiple clients, typically over a network connection.
Resources shared for many users, while clients are fairly simple.

33


Multi-tier architecture

Higher tiers send requests to lower tiers, but not vice versa.

Common for business and web applications.
34





can be conceptually extended with components related to machine learning (as we will show in chapter Deploying a Model).

Speaker notes

SOA and microservices

Multiple self-contained services/processes that communicate via
RPC. 35





allows independent deployment, versioning, and scaling of services and flexible routing of requests at the network level. Many modern, scalable web-based systems use
this design, as we will discuss in chapter Scaling the System. Also independent development.

Speaker notes

Event-based architecture

Individual system components listen to messages broadcasted by
other components, typically through some message bus.

36




Since the component publishing a message does not need to know who consumes it, this architecture strongly decouples components in a system and makes it easy to
add new components. We will see this architecture style when discussing stream processing systems in chapter Scaling the System.

Speaker notes

Data-flow architectures

Dataflow program composed of shell commands.

The system is organized around data, often in a sequential pipeline.

37




This design allows flexible changes of components and flexible composition of pipelines from different subsets of components. Unix shell commands can be composed
through pipes to perform more complex tasks and machine-learning pipelines often follow this design of multiple transformations to a dataset arranged in a sequence or
directed acyclic graph. Machine-learning pipelines tend to follow this data-flow style, as do batch processing systems for very large datasets.

Speaker notes

Design Patterns

Design patterns name and
describe common solutions to
known design problems, and
known advantages and pitfalls.

Historically popular in OO; now
applied broadly across system
design, both architecturally and
at a lower level (i.e., interactions
among subsystems).

38


Observer or publish-subscribe

Intent: Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

39




Motivation: [This would include an illustrative example of a user interface that needs to update multiple visual representations of data whenever input data changes, such as
multiple diagrams in a spreadsheet.] Solution: [This would include a description of the technical structure with an observer interface implemented by observers and an
observable object managing a list of observers and calling them on state changes.] Benefits, costs, tradeoffs: Decoupling of the observed object and observers; support of
broadcast communication. Implementation overhead; observed objects unaware of consequences and costs of broadcast objects. [Typically this would be explained in
more detail with examples.]

Speaker notes

Architectural pattern: Heartbeat tactic

Intent: Detect when a component is unavailable to trigger mitigations
or repair

40




Motivation: Detect with low latency when a component or server becomes unavailable to automatically restart it or redirect traffic. Solution: The observed component sends
heartbeat messages to another component monitoring the system in regular predictable intervals. When the monitoring component does not receive the message it
assumes the observed component is unavailable and initiates corrective actions. Options: The heartbeat message can carry data to be processed. Standard data
messages can stand in for heartbeat messages so that extra messages are only sent when no regular data messages are sent for a period. Benefits, costs, tradeoffs:
Component operation can be observed. Only unidirectional messaging is needed. The observed component defines heartbeat frequency and thus detection latency and
network overhead. Higher detection latency can be achieved at the cost of higher network traffic with more frequent messages; higher confidence in detection can be
achieved at the cost of lower latency by waiting for multiple missing messages. Alternatives: Ping/echo tactic where the monitoring component requests responses. Source:

Speaker notes

https://www.se.rit.edu/~swen-440/slides/instructor-specific/Kuehl/Lecture%2019%20Design%20Tactics.pdf

https://www.se.rit.edu/~swen-440/slides/instructor-specific/Kuehl/Lecture%2019%20Design%20Tactics.pdf

Machine learning pattern for reproducibility: Feature
Store

Intent: Reuse features across projects by decoupling feature creation
from model development and serving

41




Source: Motivation: The same feature engineering code is needed during model training and model serving;
inconsistencies are dangerous. In addition, some features may be expensive to compute but useful in multiple projects. Also, data scientists often need the same or similar
features across multiple projects, but often lack a systematic mechanism for reuse. Solution: Separate feature engineering code and reuse it both in the training pipeline
and the model inference infrastructure. Catalog features with metadata to make them discoverable. Cache computed features used in multiple projects. Typically
implemented in open-source infrastructure projects. Benefits: Reusable features across projects; avoiding redundant feature computations; preventing training-serving
skew; central versioning of features; separation of concerns. Costs: Nontrivial infrastructure; extra engineering overhead in data science projects. This concept is discussed
in more depth in chapter Deploying a Model.

Speaker notes

https://changyaochen.github.io/ML-design-pattern-1/

https://changyaochen.github.io/ML-design-pattern-1/

Scoping Relevant Qualities
of ML Components
From System Quality Requirements to Component Quality
Specifications

42


AI = DL?

43


Design Decision: ML Model Selection
How do I decide which ML algorithm to use for my project?

Criteria: Quality Attributes & Constraints

44


Accuracy is not Everything
Beyond prediction accuracy, what qualities may be relevant for an ML
component?

45




Collect qualities on whiteboard

Speaker notes

Qualities of Interest?
Scenario: ML component for transcribing audio files

46




Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here?

Cost per transaction; how much does it cost to transcribe? How much do we make?

Speaker notes

Qualities of Interest?
Scenario: Component for detecting lane markings in a vehicle

47




Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here?

Realtime use

Speaker notes

Qualities of Interest?
Scenario: Component for detecting credit card frauds, as a service for
banks

48




Very high volume of transactions, low cost per transaction, frequent updates

Incrementality

Speaker notes

Common ML Qualities to Consider
Accuracy
Correctness guarantees? Probabilistic guarantees (--> symbolic AI)
How many features?
How much data needed? Data quality important?
Incremental training possible?
Training time, memory need, model size -- depending on training
data volume and feature size
Inference time, energy efficiency, resources needed, scalability
Interpretability, explainability
Robustness, reproducibility, stability
Security, privacy, fairness

49


Constraints and Tradeoffs

50




How do I decide which ML algorithm to use for my project?

Criteria: Quality Attributes & Constraints

Speaker notes

Constraints
Constraints define the space of attributes for valid design solutions

51




Design space exploration: The space of all possible designs (dotted rectangle) is reduced by several constraints on qualities of the system, leaving only a subset of designs
for further consideration (highlighted center area).

Speaker notes

Types of Constraints
Problem constraints: Minimum required QAs for an acceptable
product

Project constraints: Deadline, project budget, available
personnel/skills

Design constraints
Type of ML task required (regression/classification)
Available data
Limits on computing resources, max. inference cost/time

52


Constraints: Cancer Prognosis?

53


Constraints: Music Recommendations?

54


Trade-offs between ML algorithms
If there are multiple ML algorithms that satisfy the given constraints,
which one do we select?

Different ML qualities may conflict with each other; this requires
making a trade-off between these qualities

Among the qualities of interest, which one(s) do we care the most
about?

And which ML algorithm is most suitable for achieving those
qualities?
(Similar to requirements conflicts)

55


Common ML Algorithms
and their Qualities

56


Linear Regression

Tasks: Regression
Qualities: Advantages: ?? Drawbacks: ??

57




Easy to interpret, low training cost, small model size
Can't capture non-linear relationships well

Speaker notes

Decision Trees
Tasks: Classification &
regression
Qualities: Advantages: ??
Drawbacks: ??

58




Building:

Identify all possible decisions
Select the decision that best splits the dataset into distinct outcomes (typically via entropy or similar measure)
Repeatedly further split subsets, until stopping criteria reached
random forests do the same but with multiple trees, prediction of multiple trees

Speaker notes

Neural Networks + Deep Learning
Simulating biological neural networks of neurons (nodes) and synapses (connections). Basic building
blocks: Artificial neurons, in layers.

Deep learning: more layers, different numbers of neurons. Different kinds of connections.

Advantages ?? Drawbacks??

59




Artificial neural networks are inspired by how biological neural networks work ("groups of chemically connected or functionally associated neurons" with synapses forming
connections)

High accuracy; can capture a wide range of problems (linear & non-linear)
Difficult to interpret; high training costs (time & amount of data required, hyperparameter tuning)

From "Texture of the Nervous System of Man and the Vertebrates" by Santiago Ramón y Cajal, via

Speaker notes

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes

60


Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10
output classes
28x28 = 784 inputs in input layers (each 0..255)
Example model with 3 layers, 300, 100, and 10 neurons

How many parameters does this model have?

model = keras.models.Sequential([
 keras.layers.Flatten(input_shape=[28, 28]),
 keras.layers.Dense(300, activation="relu"),
 keras.layers.Dense(100, activation="relu"),
 keras.layers.Dense(10, activation="softmax")
])

61


Example Scenario

Total of 266,610 parameters in this small example! (Assuming float
types, that's 1 MB)

model = keras.models.Sequential([
 keras.layers.Flatten(input_shape=[28, 28]),
 # 784*300+300 = 235500 parameter
 keras.layers.Dense(300, activation="relu"),
 # 300*100+100 = 30100 parameters
 keras.layers.Dense(100, activation="relu"),
 # 100*10+10 = 1010 parameters
 keras.layers.Dense(10, activation="softmax")
])

62


Network Size
50 Layer ResNet network -- classifying 224x224 images into 1000 categories

26 million weights, computes 16 million activations during inference, 168
MB to store weights as floats

Google in 2012(!): 1TB-1PB of training data, 1 billion to 1 trillion parameters
OpenAI’s GPT-2 (2019) -- text generation

48 layers, 1.5 billion weights (~12 GB to store weights)
released model reduced to 117 million weights
trained on 7-8 GPUs for 1 month with 40GB of internet text from 8 million
web pages

OpenAI’s GPT-3 (2020): 96 layers, 175 billion weights, 700 GB in memory,
$4.6M in approximate compute cost for training

63




Speaker notes

https://lambdalabs.com/blog/demystifying-gpt-3/

https://lambdalabs.com/blog/demystifying-gpt-3/

Cost & Energy Consumption
Consumption CO2

(lbs)

Air travel, 1 passenger,
NY↔SF

1984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avg incl. fuel, 1
lifetime

126,000

Training one model (GPU) CO2
(lbs)

NLP pipeline (parsing,
SRL)

39

w/ tuning &
experimentation

78,468

Transformer (big) 192

w/ neural architecture
search

626,155

64


Cost & Energy Consumption
Model Hardware Hours CO2 Cloud cost in USD
Transformer P100x8 84 192 289–981

ELMo P100x3 336 262 433–1472

BERT V100x64 79 1438 3751–13K

NAS P100x8 274,120 626,155 943K–3.2M

GPT-2 TPUv3x32 168 — 13K–43K

GPT-3 — 4.6M

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "
." In Proc. ACL, pp. 3645-3650. 2019.

Energy and Policy Considerations for
Deep Learning in NLP

65


https://arxiv.org/pdf/1906.02243.pdf

Trade-offs: Cost vs Accuracy

"We evaluated some of the new
methods offline but the additional
accuracy gains that we measured
did not seem to justify the
engineering effort needed to bring
them into a production
environment.”

Amatriain & Basilico. , Netflix Technology Blog (2012)Netflix Recommendations: Beyond the 5 stars

66


https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

Trade-offs: Accuracy vs Interpretability

Q. Examples where one is more important than the other?

Bloom & Brink. ,
Presentation at O'Reilly Strata Conference (2014).

Overcoming the Barriers to Production-Ready Machine Learning Workflows

67


https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314

Breakout: Qualities & ML Algorithms
Consider two scenarios:
1. Credit card fraud detection
2. Pedestrian detection in sidewalk robot

As a group, post to #lecture tagging all group members:

Qualities of interests: ??
Constraints: ??
ML algorithm(s) to use: ??

68


Summary
Software architecture focuses on early key design decisions, focused
on key qualities

Between requirements and implementation

Decomposing the system into components, many ML components

Many qualities of interest, define metrics and operationalize

Constraints and tradeoff analysis for selecting ML techniques in
production ML settings

69


Further Readings
Bass, Len, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-Wesley Professional, 3rd edition, 2012.
Yokoyama, Haruki. “Machine learning system architectural pattern for improving operational stability.” In 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), pp. 267–274. IEEE, 2019.
Serban, Alex, and Joost Visser. “An Empirical Study of Software Architecture for Machine Learning.” In Proceedings of the International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2022.
Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design patterns. O’Reilly Media, 2020.
Lewis, Grace A., Ipek Ozkaya, and Xiwei Xu. “Software Architecture Challenges for ML Systems.” In 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 634–638. IEEE, 2021.
Vogelsang, Andreas, and Markus Borg. “Requirements Engineering for Machine Learning: Perspectives from Data Scientists.” In Proc. of
the 6th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), 2019.
Habibullah, Khan Mohammad, Gregory Gay, and Jennifer Horkoff. "

." arXiv preprint arXiv:2203.11063 (2022).
Non-Functional Requirements for Machine Learning: An Exploration

of System Scope and Interest

70


https://arxiv.org/abs/2203.11063

17-645 Machine Learning in Production • Christian Kaestner, Claire Le Goues, Carnegie Mellon University • Spring 2024



