
Machine Learning in ProductionMachine Learning in Production

Deploying a ModelDeploying a Model
1



Deeper into architecture and design...

2


Learning Goals
Understand important quality considerations when deploying ML components
Follow a design process to explicitly reason about alternative designs and their
quality tradeoffs
Gather data to make informed decisions about what ML technique to use and
where and how to deploy it
Understand the power of design patterns for codifying design knowledge

Create architectural models to reason about relevant characteristics
Critique the decision of where an AI model lives (e.g., cloud vs edge vs hybrid),
considering the relevant tradeoffs
Deploy models locally and to the cloud
Document model inference services

3


Readings
Required reading:

🕮 Hulten, Geoff. "
" Apress, 2018, Chapter 13 (Where

Intelligence Lives).
📰 Daniel Smith. "

." TheoryLane Blog Post. 2017.

Recommended reading:
🕮 Rick Kazman, Paul Clements, and Len Bass.

 Addison-Wesley Professional, 2012, Chapter 1

Building Intelligent Systems: A Guide to Machine
Learning Engineering.

Exploring Development Patterns in Data
Science

Software architecture
in practice.

4


https://www.buildingintelligentsystems.com/
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

Deploying a Model is Easy

5


Deploying a Model is Easy
Model inference component as function/library

from sklearn.linear_model import LogisticRegression
model = … # learn model or load serialized model ...
def infer(feature1, feature2):
 return model.predict(np.array([[feature1, feature2]])

6


Deploying a Model is Easy
Model inference component as a service

from flask import Flask, escape, request
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = '/tmp/uploads'
detector_model = … # load model…

inference API that returns JSON with classes
found in an image
@app.route('/get_objects', methods=['POST'])
def pred():
 uploaded_img = request.files["images"]
 coverted img = … # feature encoding of uploaded img

7


Deploying a Model is Easy
Packaging a model inference service in a container

FROM python:3.8-buster
RUN pip install uwsgi==2.0.20
RUN pip install tensorflow==2.7.0
RUN pip install flask==2.0.2
RUN pip install gunicorn==20.1.0
COPY models/model.pf /model/
COPY ./serve.py /app/main.py
WORKDIR ./app
EXPOSE 4040
CMD ["gunicorn", "-b 0.0.0.0:4040", "main:app"]

8


Deploying a Model is Easy
Model inference component as a service in the cloud

Package in container or other infrastructure
Deploy in cloud infrastructure
Auto-scaling with demand ("Stateless Serving Functions Pattern")
MLOps infrastructure to automate all of this (more on this later)

 (low code service creation, deployment, model
registry),

 (automated deployment and scaling of models on AWS),
 (tensorflow GRPC services)

 (no-code model service and many many additional
services for monitoring and operations on Kubernetes)

BentoML

Cortex
TFX model serving
Seldon Core

9


https://github.com/bentoml/BentoML
https://github.com/bentoml/BentoML
https://www.tensorflow.org/tfx/guide/serving
https://www.seldon.io/tech/products/core/

But is it really easy?
Offline use?

Deployment at scale?

Hardware needs and operating cost?

Frequent updates?

Integration of the model into a system?

Meeting system requirements?

Every system is different!
10



Every System is Different
Personalized music recommendations for Spotify

Transcription service startup

Self-driving car

Smart keyboard for mobile device

11


Inference is a Component within a System

12


Recall: Thinking like a
Software Architect

13


Recall: Systems Thinking

A system is a set of inter-related components that work together in a
particular environment to perform whatever functions are required to
achieve the system's objective -- Donella Meadows

14


Architectural Modeling and
Reasoning

15


16




Map of Pittsburgh. Abstraction for navigation with cars.

Speaker notes

17




Cycling map of Pittsburgh. Abstraction for navigation with bikes and walking.

Speaker notes

18




Fire zones of Pittsburgh. Various use cases, e.g., for city planners.

Speaker notes

Analysis-Specific Abstractions
All maps were abstractions of the same real-world construct

All maps were created with different goals in mind
Different relevant abstractions
Different reasoning opportunities

Architectural models are specific system abstractions, for reasoning
about specific qualities

No uniform notation

19


What can we reason about?

20


What can we reason about?

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. " " ACM SIGOPS
operating systems review. Vol. 37. No. 5. ACM, 2003.

The Google file system.

21


https://ai.google/research/pubs/pub51.pdf



Scalability through redundancy and replication; reliability wrt to single points of failure; performance on edges; cost

Speaker notes

What can we reason about?

Peng, Zi, Jinqiu Yang, Tse-Hsun Chen, and Lei Ma. "A first look at the integration of machine learning
models in complex autonomous driving systems: a case study on Apollo." In Proc. FSE, 2020.

22


Suggestions for Graphical Notations
Use notation suitable for analysis

Document meaning of boxes and edges in legend

Graphical or textual both okay; whiteboard sketches often sufficient

Formal notations available

23


Case Study: Augmented
Reality Translation

24




Image:

Speaker notes

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

Case Study: Augmented Reality Translation

25


Case Study: Augmented Reality Translation

26




Consider you want to implement an instant translation service similar toGoogle translate, but run it on embedded hardware in glasses as an augmented reality service.

Speaker notes

System Qualities of Interest?

27


Design Decision: Selecting
ML Algorithms
What ML algorithms to use and why? Tradeoffs?

28




Relate back to previous lecture about AI technique tradeoffs, including for example Accuracy Capabilities (e.g. classification, recommendation, clustering…) Amount of
training data needed Inference latency Learning latency; incremental learning? Model size Explainable? Robust?

Speaker notes

Design Decision: Where
Should the Model Live?
(Deployment Architecture)

29


Where Should the Models Live?

Cloud? Phone? Glasses?

What qualities are relevant for the decision?

30




Trigger initial discussion

Speaker notes

Considerations
How much data is needed as input for the model?
How much output data is produced by the model?
How fast/energy consuming is model execution?
What latency is needed for the application?
How big is the model? How often does it need to be updated?
Cost of operating the model? (distribution + execution)
Opportunities for telemetry?
What happens if users are offline?

31


Breakout: Latency and Bandwidth Analysis
1. Estimate latency and bandwidth requirements between

components
2. Discuss tradeoffs among different deployment models

As a group, post in #lecture tagging group members:

32




Identify at least OCR and Translation service as two AI components in a larger system. Discuss which system components are worth modeling (e.g., rendering, database,
support forum). Discuss how to get good estimates for latency and bandwidth.

Some data: 200ms latency is noticable as speech pause; 20ms is perceivable as video delay, 10ms as haptic delay; 5ms referenced as cybersickness threshold for virtual
reality 20ms latency might be acceptable

bluetooth latency around 40ms to 200ms

bluetooth bandwidth up to 3mbit, wifi 54mbit, video stream depending on quality 4 to 10mbit for low to medium quality

google glasses had 5 megapixel camera, 640x360 pixel screen, 1 or 2gb ram, 16gb storage

Speaker notes

33


From the Reading: When would one use
the following designs?

Static intelligence in the product
Client-side intelligence (user-facing devices)
Server-centric intelligence
Back-end cached intelligence
Hybrid models

Consider: Offline use, inference latency, model updates, application
updates, operating cost, scalability, protecting intellectual property

34




From the reading:

Static intelligence in the product
difficult to update
good execution latency
cheap operation
offline operation
no telemetry to evaluate and improve

Client-side intelligence
updates costly/slow, out of sync problems
complexity in clients
offline operation, low execution latency

Server-centric intelligence
latency in model execution (remote calls)
easy to update and experiment
operation cost
no offline operation

Back-end cached intelligence
precomputed common results
fast execution, partial offline
saves bandwidth, complicated updates

Hybrid models

Speaker notes

Where Should Feature Encoding Happen?

Should feature encoding happen server-side or client-side? Tradeoffs?

35




When thinking of model inference as a component within a system, feature encoding can happen with the model-inference component or can be the responsibility of the
client. That is, the client either provides the raw inputs (e.g., image files; dotted box in the figure above) to the inference service or the client is responsible for computing
features and provides the feature vector to the inference service (dashed box). Feature encoding and model inference could even be two separate services that are called
by the client in sequence. Which alternative is preferable is a design decision that may depend on a number of factors, for example, whether and how the feature vectors
are stored in the system, how expensive computing the feature encoding is, how often feature encoding changes, how many models use the same feature encoding, and so
forth. For instance, in our stock photo example, having feature encoding being part of the inference service is convenient for clients and makes it easy to update the model
without changing clients, but we would have to send the entire image over the network instead of just the much smaller feature vector for the reduced 300 x 300 pixels.

Speaker notes

Reusing Feature Engineering Code

Avoid training–serving skew
36



The Feature Store Pattern
Central place to store, version, and describe feature engineering
code
Can be reused across projects
Possible caching of expensive features

Many open source and commercial offerings, e.g., Feast, Tecton, AWS
SageMaker Feature Store

37


Tecton Feature Store
Tecton Web DemoTecton Web Demo

38


https://www.youtube.com/watch?v=u_L_V2HQ_nQ

More Considerations for Deployment
Decisions
Coupling of ML pipeline parts

Coupling with other parts of the system

Ability for different developers and analysts to collaborate

Support online experiments

Ability to monitor

39


Real-Time Serving; Many Models

Peng, Zi, Jinqiu Yang, Tse-Hsun Chen, and Lei Ma. "A first look at the integration of machine learning
models in complex autonomous driving systems: a case study on Apollo." In Proc. FSE. 2020.

40


Infrastructure Planning (Facebook Examp.)

Hazelwood, Kim, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov,
Mohamed Fawzy et al. "Applied machine learning at facebook: A datacenter infrastructure
perspective." In Int'l Symp. High Performance Computer Architecture. IEEE, 2018.

41


Capacity Planning (Facebook Example)
Services Relative Capacity Compute Memory
News Feed 100x Dual-Socket CPU High

Facer (face recognition) 10x Single-Socket CPU Low

Lumos (image understanding) 10x Single-Socket CPU Low

Search 10x Dual-Socket CPU High

Lang. Translation 1x Dual-Socket CPU High

Sigma (anomaly and spam detection) 1x Dual-Socket CPU High
Trillions of inferences per day, in real time
Preference for cheap single-CPU machines whether possible
Different latency requirements, some "nice to have" predictions
Some models run on mobile device to improve latency and reduce communication cost

Hazelwood, et al. "Applied machine learning at facebook: A datacenter infrastructure perspective."
In Int'l Symp. High Performance Computer Architecture. IEEE, 2018.

42


Operational Robustness
Redundancy for availability?

Load balancer for scalability?

Can mistakes be isolated?
Local error handling?
Telemetry to isolate errors to component?

Logging and log analysis for what qualities?

43


Preview: Telemetry Design

44


Telemetry Design
How to evaluate system performance and mistakes in production?

45




Discuss strategies to determine accuracy in production. What kind of telemetry needs to be collected?

Speaker notes

The Right and Right Amount of Telemetry
Purpose:

Monitor operation
Monitor mistakes (e.g., accuracy)
Improve models over time (e.g., detect new features)

Challenges:
too much data, no/not enough data
hard to measure, poor proxy measures
rare events
cost
privacy

Interacts with deployment decisions
46



Telemetry Tradeoffs
What data to collect? How much? When?

Estimate data volume and possible bottlenecks in system.

47




Discuss alternatives and their tradeoffs. Draw models as suitable.

Some data for context: Full-screen png screenshot on Pixel 2 phone (1080x1920) is about 2mb (2 megapixel); Google glasses had a 5 megapixel camera and a 640x360
pixel screen, 16gb of storage, 2gb of RAM. Cellar cost are about $10/GB.

Speaker notes

Integrating Models into a
System

48


Recall: Inference is a Component within a
System

49


Separating Models and Business Logic

Based on: Yokoyama, Haruki. "Machine learning system architectural pattern for improving
operational stability." In Int'l Conf. Software Architecture Companion, pp. 267-274. IEEE, 2019.

50


Separating Models and Business Logic
Clearly divide responsibilities

Allows largely independent and parallel work, assuming stable
interfaces

Plan location of non-ML safeguards and other processing logic

51


Composing Models: Ensemble and
metamodels

52


Composing Models: Decomposing the
problem, sequential

53


Composing Models: Cascade/two-phase
prediction

54


Composing Models: Retrieval Augmented
Generation (RAG)

Figure by Leonie Monigatti
55



https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-langchain-implementation-4e9bd5f6a4f2

Documenting Model
Inference Interfaces

56


Why Documentation
Model inference between teams:

Data scientists developing the model
Other data scientists using the model, evolving the model
Software engineers integrating the model as a component
Operators managing model deployment

Will this model work for my problem?

What problems to anticipate?

57


Classic API Documentation
/**
 * compute deductions based on provided adjusted
 * gross income and expenses in customer data.
 *
 * see tax code 26 U.S. Code A.1.B, PART VI
 */
float computeDeductions(float agi, Expenses expenses);

58


What to document for models?

59


Documenting Input/Output Types for
Inference Components

From Google’s public .

{
 "mid": string,
 "languageCode": string,
 "name": string,
 "score": number,
 "boundingPoly": {
 object (BoundingPoly)
 }
}

object detection API
60



https://cloud.google.com/vision/docs/object-localizer

Documentation beyond I/O Types
Intended use cases, model capabilities and limitations

Supported target distribution (vs preconditions)

Accuracy (various measures), incl. slices, fairness

Latency, throughput, availability (service level agreements)

Model qualities such as explainability, robustness, calibration

Ethical considerations (fairness, safety, security, privacy)

Example for OCR model? How would you describe these?
61



Model Cards
Proposal and template for documentation from Google

Intended use, out-of-scope use
Training and evaluation data
Considered demographic factors
Accuracy evaluations
Ethical considerations

1-2 page summary
Focused on fairness
Widely discussed, but not frequently adopted

Mitchell, Margaret, et al. " ." In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 2019.

Model cards for model reporting

62


https://arxiv.org/abs/1810.03993

Example from Model Cards paper
63



From: https://modelcards.withgoogle.com/object-detection
64



https://modelcards.withgoogle.com/object-detection

FactSheets
Proposal and template for documentation from IBM; intended to communicate
intended qualities and assurances

Longer list of criteria, including
Service intention, intended use
Technical description
Target distribution
Own and third-party evaluation results
Safety and fairness considerations, explainability
Preparation for drift and evolution
Security, lineage and versioning

Arnold, Matthew, et al. "
." IBM Journal of Research and Development 63, no. 4/5 (2019): 6-1.

FactSheets: Increasing trust in AI services through supplier's declarations of
conformity

65


https://arxiv.org/pdf/1808.07261.pdf

Recall: Correctness vs Fit
Without a clear specification a model is difficult to document

Need documentation to allow evaluation for fit

Description of target distribution is a key challenge

66


Design Patterns for AI
Enabled Systems
(no standardization, yet)

67


Design Patterns are Codified Design
Knowl.
Vocabulary of design problems and solutions

Example: Observer pattern object-oriented design pattern describes a
solution how objects can be notified when another object changes

68


Common System Structures
Client-server architecture

Multi-tier architecture

Service-oriented architecture and microservices

Event-based architecture

Data-flow architecture

69


Multi-Tier Architecture

Based on: Yokoyama, Haruki. "Machine learning system architectural pattern for improving
operational stability." In Int'l Conf. Software Architecture Companion, pp. 267-274. IEEE, 2019.

70


Microservices

(more later)
71



Patterns for ML-Enabled Systems
Stateless/serverless Serving Function Pattern
Feature-Store Pattern
Batched/precomuted serving pattern
Two-phase prediction pattern
Batch Serving Pattern
Decouple-training-from-serving pattern

72


Anti-Patterns
Big Ass Script Architecture
Dead Experimental Code Paths
Glue code
Multiple Language Smell
Pipeline Jungles
Plain-Old Datatype Smell
Undeclared Consumers

See also: 🗎 Washizaki, Hironori, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
" ." Draft, 2019; 🗎 Sculley, et al. "

." In NeurIPS, 2015.
Machine Learning Architecture and Design Patterns Hidden

technical debt in machine learning systems
73



http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Summary
Model deployment seems easy, but involves many design decisions

What models to use?
Where to deploy?
How to design feature encoding and feature engineering?
How to compose with other components?
How to document?
How to collect telemetry?

Problem-specific modeling and analysis: Gather estimates, consider design
alternatives, make tradeoffs explicit

Codifying design knowledge as patterns
74



Further Readings
🕮 Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design patterns.
O’Reilly Media, 2020.
🗎 Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. “Model cards for model
reporting.” In Proceedings of the conference on fairness, accountability, and transparency, pp.
220–229. 2019.
🗎 Arnold, Matthew, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta,
Aleksandra Mojsilović, Ravi Nair, Karthikeyan Natesan Ramamurthy, Darrell Reimer, Alexandra
Olteanu, David Piorkowski, Jason Tsay, and Kush R. Varshney. “FactSheets: Increasing trust in AI
services through supplier’s declarations of conformity.” IBM Journal of Research and
Development 63, no. 4/5 (2019): 6–1.
🗎 Yokoyama, Haruki. “Machine learning system architectural pattern for improving operational
stability.” In 2019 IEEE International Conference on Software Architecture Companion (ICSA-C),
pp. 267–274. IEEE, 2019.

75


Machine Learning in Production/AI Engineering • Christian Kaestner & Claire Le Goues, Carnegie Mellon University • Spring 2024



