

Deeper into architecture and design...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance,
versioning,
reproducibility

Safety

Security and
privacy

Fairness Interpretability

and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture

Learning Goals

o Understand important quality considerations when deploying ML components

o Follow a design process to explicitly reason about alternative designs and their
quality tradeoffs

o Gather data to make informed decisions about what ML technique to use and
where and how to deploy it

o Understand the power of design patterns for codifying design knowledge

o Create architectural models to reason about relevant characteristics

 Critique the decision of where an Al model lives (e.g., cloud vs edge vs hybrid),
considering the relevant tradeoffs

o Deploy models locally and to the cloud

« Document model inference services

Readings

Required reading:

o Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine
Learning Engineering." Apress, 2018, Chapter 13 (Where
Intelligence Lives).

« = | Daniel Smith. "Exploring Development Patterns in Data
Science." TheoryLane Blog Post. 2017.

Recommended reading:

« Rick Kazman, Paul Clements, and Len Bass. Software architecture
in practice. Addison-Wesley Professional, 2012, Chapter 1

https://www.buildingintelligentsystems.com/
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

Deploying a Model is Easy

Deploying a Model is Easy
Model inference component as function/library

from sklearn.linear_model import LogisticRegression
model = ..

def infer(featurel, feature2):
return model.predict(np.array([[featurel, feature2]])

Deploying a Model is Easy

Model inference component as a service

from flask import Flask, escape, request
app = Flask(__name__)

app.config|] =
detector_model = ..

def pred():
uploaded_1img request.files|
coverted img

Deploying a Model is Easy

Packaging a model inference service in a container

FROM python:3.8-buster

RUN pip install uwsgi==2.0.20

RUN pip install tensorflow==2.7.0
RUN pip install flask==2.0.2

RUN pip install gunicorn==20.1.0
COPY models/model.pf /model/

COPY ./serve.py /app/main.py
WORKDIR ./app

EXPOSE 4040

CMD [

Deploying a Model is Easy

Model inference component as a service in the cloud

o Package in container or other infrastructure
o Deploy in cloud infrastructure
« Auto-scaling with demand ("Stateless Serving Functions Pattern")
« MLOps infrastructure to automate all of this (more on this later)
= BentoML (low code service creation, deployment, model
registry),
= Cortex (automated deployment and scaling of models on AWS),
= TFX model serving (tensorflow GRPC services)
= Seldon Core (no-code model service and many many additional
services for monitoring and operations on Kubernetes)

https://github.com/bentoml/BentoML
https://github.com/bentoml/BentoML
https://www.tensorflow.org/tfx/guide/serving
https://www.seldon.io/tech/products/core/

But is it really easy?

Offline use?

Deployment at scale?

Hardware needs and operating cost?
Frequent updates?

Integration of the model into a system?
Meeting system requirements?

Every system is different!

Every System is Different

Personalized music recommendations for Spotify
Transcription service startup
Self-driving car

Smart keyboard for mobile device

Inference is a Component within a System

System: Transcription service

End-User Internal
User Interface Data Labeling Tool

telemetry data collection

User Audio Model Inference:
Accounts Upload Feature Speech Recognition
Server

JuswiuoJiAug

learns & deploys observes

Training ML Pipeline
Data

scales with observes

Model
Monitoring

sJab611)

Database Cloud Processing Logging Monitoring

Legend: |:| Non-ML component, |:|ML component, Dsystem boundary

Recall: Thinking like a
Software Architect

Architecture Implementation

Recall: Systems Thinking

(Software)
System [Component]

[Component] [Component] E_nvironment
(incl. users,
/ physical world)

[Component]\[Component]

A system iIs a set of inter-related components that work together in a
particular environment to perform whatever functions are required to
achieve the system'’s objective -- Donella Meadows

Architectural Modeling and
Reasoning

B Y

Gy

e = -
MILLVALE. " gk

Speaker notes

Map of Pittsburgh. Abstraction for navigation with cars.

ERST ’
ALLEGHERY

1)
e I S
==

+ B
]
& Teh Street e o
5 Paygron ¥
I.umnﬂl&--"'..l.-- o
Shopping Center 2.5 ___3'!"‘
Bt N

2 S -

- :"-. -

-

fhrmensl Park . % Children's Hasnial
F T i Hiof Fittsiurgh &
wombn St By S TruRMe
LAMAEMCEVILAES M o
P . P

5 =] mm:-": f

Speaker notes

Cycling map of Pittsburgh. Abstraction for navigation with bikes and walking.

Speaker notes

Fire zones of Pittsburgh. Various use cases, e.g., for city planners.

Analysis-Specific Abstractions

All maps were abstractions of the same real-world construct

All maps were created with different goals in mind

« Different relevant abstractions
« Different reasoning opportunities

Architectural models are specific system abstractions, for reasoning
about specific qualities

No uniform notation

What can we reason about?

| LAN

1Order Receiver

i Enter Order

Ship Order
System T

Shipping

Enter Order
Order Receiver

Order Receiver

| Change Inventory

X

IT

I
I
I
I
I
I
I
I
I
-

What can we reason about?

Application GFS master » /foo/bar

chunk 2ef0

(file name, chunk index)
GFS client | File namespace r,f

(chunk handle.
chunk locations)

i
i
i

Legend:
ﬂ Data messages

Control messages

Instructions to chunkserver
Chunkserver state

(chunk handle, byte range) | ¥ L

GFS chunkserver GFS chunkserver

Linux file system Linux file system
=g~ Bl

Figure 1: GFS Architecture

chunk data

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS

= operating systems review. Vol. 37. No. 5. ACM, 2003.

https://ai.google/research/pubs/pub51.pdf

Speaker notes

Scalability through redundancy and replication; reliability wrt to single points of failure; performance on edges; cost

What can we reason about?

Traffic_Light

Recognition Trajefctgry
R Prediction
_ bounding ‘Horlzon_nght ‘ g / \
: Traffic Light ic li
Traffic_Light_ boxes - | Poat rocgss traffic light result messege
Detection . . P > — Vehicle_Cruise_Cutin
\ Vertical_Light \/\ = i
. Traffic Light Scenarios Manager { Vehicle Cruise_Go 1
Lane_Detection {Quad:ate_nght ‘ 7 N B B
J
4 || 111) —— \ Daicifis polynomial curve . lane { Vehicle_Junction_Map J
2 C) Prepro%ess and lane type . |Lane Postprocess final lane result ' messege Prediction)
3 o > —_— > A >
3 = | Container > . .
TTTTT L LT \/\ . —> Vehicle Junction MLP
Camera S ¥ Lane Line Cruise
amera ; .
- . . - . Vehicle L
| obstacle information Camera le——————| Calibration \ J { chicle_Lane_Scanning W
‘ Camera_Obstacle_Detection J Postprocess |
\/\ precept obstacle [Vehicle MLP]
/ \ message
LiDAR_Obstacle Detection .
Bicycle Vehicle RNN }
= : { LiDAR_Velodyne 16 l obstacle] ‘ final object pl)
. Point Clouds . information LiDAR Fusion result .
P —>!{ Preprocess > [J »| Postprocess I e Vehicle Lane Aggregate
i~ N LiDAR_Velodyne_64 N
O==0 _/\ Pedestrian
. P ian LSTM
LiIDAR { LiDAR_Velodyne_128 ‘ (- i { iEERE LD ‘
rJ\ do—0F
owro’ =0 \ -
Radar Vehicle(truck or car)
Detection
Result

Peng, Zi, Jingiu Yang, Tse-Hsun Chen, and Lei Ma. "A first look at the integration of machine learning
models in complex autonomous driving systems: a case study on Apollo." In Proc. FSE, 2020.

Suggestions for Graphical Notations

Use notation suitable for analysis
Document meaning of boxes and edges in legend

Graphical or textual both okay; whiteboard sketches often sufficient

Formal notations available

Case Study: Augmented
Reality Translation

Speaker notes

Image: https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

Case Study: Augmented Reality Translation

i3 D &

=

Case Study: Augmented Reality Translation

Speaker notes

Consider you want to implement an instant translation service similar toGoogle translate, but run it on embedded hardware in glasses as an augmented reality service.

System Qualities of Interest?

Design Decision: Selecting
ML Algorithms

What ML algorithms to use and why? Tradeoffs?

_cash only |
4 . ‘,n

Speaker notes

Relate back to previous lecture about Al technique tradeoffs, including for example Accuracy Capabilities (e.g. classification, recommendation, clustering...) Amount of
training data needed Inference latency Learning latency; incremental learning? Model size Explainable? Robust?

Design Decision: Where
Should the Model Live?

(Deployment Architecture)

Where Should the Models Live?

A
Cloud Mobile
Infrastructure | Mobile data/ Phone Bluetooth

wifi
Battery

Cloud? Phone? Glasses?

What qualities are relevant for the decision?

'\

Smart
Glasses

Battery

Camera

Speaker notes

Trigger initial discussion

Considerations

« How much data is needed as input for the model?

« How much output data is produced by the model?

« How fast/energy consuming is model execution?

« What latency is needed for the application?

« How big is the model? How often does it need to be updated?
« Cost of operating the model? (distribution + execution)

o Opportunities for telemetry?

« What happens if users are offline?

Breakout: Latency and Bandwidth Analysis

1. Estimate latency and bandwidth requirements between
components
2. Discuss tradeoffs among different deployment models

‘ ‘
Cloud [Mobile | Smart Camera
Infrastructure | Mobile data/ Phone Bluetooth Glasses Display

wifi
Battery Battery

As a group, post in #lecture tagging group members:

Speaker notes

Identify at least OCR and Translation service as two Al components in a larger system. Discuss which system components are worth modeling (e.g., rendering, database,
support forum). Discuss how to get good estimates for latency and bandwidth.

Some data: 200ms latency is noticable as speech pause; 20ms is perceivable as video delay, 10ms as haptic delay; 5ms referenced as cybersickness threshold for virtual
reality 20ms latency might be acceptable

bluetooth latency around 40ms to 200ms

bluetooth bandwidth up to 3mbit, wifi 54mbit, video stream depending on quality 4 to 10mbit for low to medium quality

google glasses had 5 megapixel camera, 640x360 pixel screen, 1 or 2gb ram, 16gb storage

Cloud
Infrastructure

Mobile data, 4G

latency: 90-160ms

bandwidth: 60mbit/s

Mobile
Phone

Bluetooth
|
latency: 40-200ms
bandwidth: 3mbit/s

Smart
Glasses

l Wifi + 200mbit cable conn. I

latency: 10-2000ms
bandwidth: 90mbit/s

From the Reading: When would one use
the following designs?

o Static intelligence in the product

« Client-side intelligence (user-facing devices)
o Server-centric intelligence

« Back-end cached intelligence

e Hybrid models

« Consider: Offline use, inference latency, model updates, application
updates, operating cost, scalability, protecting intellectual property

Speaker notes

From the reading:

« Static intelligence in the product

= difficult to update

= good execution latency

= cheap operation

= offline operation

= No telemetry to evaluate and improve
Client-side intelligence

= updates costly/slow, out of sync problems

= complexity in clients

= offline operation, low execution latency
Server-centric intelligence

= latency in model execution (remote calls)

= easy to update and experiment

= Operation cost

= no offline operation
Back-end cached intelligence

= precomputed common results

= fast execution, partial offline

= saves bandwidth, complicated updates
Hybrid models

Where Should Feature Encoding Happen?

; IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
: | .
= aw inoUte ' Feature | -
P - Feature vectors | Model | -
. encoding | inference .

Should feature encoding happen server-side or client-side? Tradeoffs?

Speaker notes

When thinking of model inference as a component within a system, feature encoding can happen with the model-inference component or can be the responsibility of the
client. That is, the client either provides the raw inputs (e.g., image files; dotted box in the figure above) to the inference service or the client is responsible for computing
features and provides the feature vector to the inference service (dashed box). Feature encoding and model inference could even be two separate services that are called
by the client in sequence. Which alternative is preferable is a design decision that may depend on a number of factors, for example, whether and how the feature vectors
are stored in the system, how expensive computing the feature encoding is, how often feature encoding changes, how many models use the same feature encoding, and so
forth. For instance, in our stock photo example, having feature encoding being part of the inference service is convenient for clients and makes it easy to update the model
without changing clients, but we would have to send the entire image over the network instead of just the much smaller feature vector for the reduced 300 x 300 pixels.

Reusing Feature Engineering Code

Training
I— ________________________ 1
[
| | Raw training Feature Learned I
| |data Feature vectors Model model
| encoding training I
________________ I
Shared feature encoding
implementation
__________ 1

Raw runtime
data

Feature Predicted
vectors Model results
inference

Feature
encoding

_ Avoid training-serving skew

The Feature Store Pattern

o Central place to store, version, and describe feature engineering
code

o Can be reused across projects

« Possible caching of expensive features

Many open source and commercial offerings, e.g., Feast, Tecton, AWS
SageMaker Feature Store

Tecton Feature Store

https://www.youtube.com/watch?v=u_L_V2HQ_nQ

More Considerations for Deployment
Decisions

Coupling of ML pipeline parts

Coupling with other parts of the system

Ability for different developers and analysts to collaborate
Support online experiments

Ability to monitor

Real-Time Serving; Many Models

Traffic_Light .
Recognition Trajefctgry
IR Prediction

; . bounding ‘Horizon_Light ‘ — g /
Traffic Light boxes S Traffic Light | traffic light result -
—> — B }—) Postprocess 9 __Mmessege [
)

A

Vehicle Cruise_Cutin

Detection) . —
L Vertical_Light \/\

— :
Traffic Light Scenarios Manager Vehicle Cruise_Go

Quadrate_Light

Lane_Detection

J

Junction

Vehicle_Junction_Map

P —
il Denseline i

olynomial curve
. Image L poly lane

N
- - . —> — Y,
2 E —>| Preprocess and lane type . |Lane Postprocess final lane result ' messege Prediction
- = R » _— f »
3 = | Container > . .
TTTTT LT | \/\ . — Vehicle_Junction MLP
Camera 4 Lane Line Cruise - -
Camera ;)
- \| obstacle information Camera «——| Calibration Vehicle Lane Scanning
‘ Camera_Obstacle_Detection | Postprocess |
O precept obstacle O edemir
/ \ message - g
LiDAR_Obstacle Detection . (
Bicycle Vehicle RNN J
= { LiDAR_Velodyne 16 l obstacle] final object pl)
. Point Clouds . information LiDAR Fusion result .
P —>{ Preprocess > N » Postprocess EEE— e Vehicle Lane Aggregate
(1 O o LiDAR_Velodyne_64 __
© ©) L - B J J\ Pedestrian
. | Pedestrian_ LSTM
LiDAR i ’ =
i LiDAR Velodyne 128 (- an |)
'oJo" fo—0” \ -/
Radar Vehicle(truck or car)
Detection
Result

Peng, Zi, Jingiu Yang, Tse-Hsun Chen, and Lei Ma. "A first look at the integration of machine learning
models in complex autonomous driving systems: a case study on Apollo." In Proc. FSE. 2020.

Infrastructure Planning (Facebook Examp.)

[Data HFeaturesHTrammg m Inference

FBLearner
FBLearner
Feature
Flow
Store

CPU+GPU

FBLearner
Predictor

Hazelwood, Kim, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov,
Mohamed Fawzy et al. "Applied machine learning at facebook: A datacenter infrastructure
— perspective. In Int'l Symp. High Performance Computer Architecture. IEEE, 2018.

Capacity Planning (Facebook Example)

Services Relative Capacity Compute Memory
News Feed 100x Dual-Socket CPU High
Facer (face recognition) 10x Single-Socket CPU Low
Lumos (image understanding) 10x Single-Socket CPU Low
Search 10x Dual-Socket CPU High
Lang. Translation 1x Dual-Socket CPU High
Sigma (anomaly and spam detection) 1x Dual-Socket CPU High

Trillions of inferences per day, in real time

Preference for cheap single-CPU machines whether possible

Different latency requirements, some "nice to have" predictions

Some models run on mobile device to improve latency and reduce communication cost

Hazelwood, et al. "Applied machine learning at facebook: A datacenter infrastructure perspective.
— In Int'l Symp. High Performance Computer Architecture. IEEE, 2018.

Operational Robustness

Redundancy for availability?
Load balancer for scalability?

Can mistakes be isolated?

e Local error handling?
o Telemetry to isolate errors to component?

Logging and log analysis for what qualities?

Preview: Telemetry Design

Telemetry Design

How to evaluate system performance and mistakes in production?

Japanese o Engiah

cash only |
; -J

Speaker notes

Discuss strategies to determine accuracy in production. What kind of telemetry needs to be collected?

The Right and Right Amount of Telemetry

Purpose:

o Monitor operation
« Monitor mistakes (e.g., accuracy)
e Improve models over time (e.g., detect new features)

Challenges:

e too much data, no/not enough data

o hard to measure, poor proxy measures
e rare events

e COSt

e privacy

Interacts with deployment decisions

Telemetry Tradeoffs

What data to collect? How much? When?

Estimate data volume and possible bottlenecks in system.

cash only |
: -:

Speaker notes

Discuss alternatives and their tradeoffs. Draw models as suitable.

Some data for context: Full-screen png screenshot on Pixel 2 phone (1080x1920) is about 2mb (2 megapixel); Google glasses had a 5 megapixel camera and a 640x360
pixel screen, 16gb of storage, 2gb of RAM. Cellar cost are about $10/GB.

Integrating Models into a
System

Recall: Inference is a Component within a
System

System: Transcription service

End-User Internal
User Interface Data Labeling Tool

telemetry data collection

User Audio Model Inference:
Accounts Upload Feature Speech Recognition
Server

JUSWIUOJIAUT

learns & deploys observes

Payment User Training ML Pipeline
Data Data

scales with observes

Model
Monitoring

s1ab661)

Database Cloud Processing Logging Monitoring

Legend: D Non-ML component, DML component, Dsystem boundary

Separating Models and Business Logic

Presentation Tier Logic Tier Data Tier
=4
— —p i — @,
: User Interface BUS.' ness Database 3
T] <+—{ Logic . &
2! ! A
3! v Y
! D Dat =
— 4| Data -] 28 — =P Data Lake D
Collection Processing g
: T o
Y l o
1 Q
Model | I 3,
Inference I @
A |
| |
|
Model i
Training "
Architectural tier —p Business data flow
[] Component . »>» ML runtime data flow

— P> ML development data flow

Based on: Yokoyama, Haruki. "Machine learning system architectural pattern for improving
— operational stability." In Int'l Conf. Software Architecture Companion, pp. 267-274. IEEE, 2019.

Separating Models and Business Logic

Clearly divide responsibilities

Allows largely independent and parallel work, assuming stable
Interfaces

Plan location of non-ML safeguards and other processing logic

Composing Models: Ensemble and
metamodels

Ensemble Metamodel / model stacking
Model 1 [p, Model 1 % p,
Meta-
Input Model 2 | p, p Input Model 2 | p, model
avg./
Model 3 [p, mode/ Model 3 [p,
max/...

Legend: machine-learned model, ®non-ML aggregation function, P prediction

Composing Models: Decomposing the
problem, sequential

Image Visual Language Caption
objects+ captions best
confidence caption

Composing Models: Cascade/two-phase
prediction

Instrument
Type >,

| Detector
Audio Instrument D P, large cloud

Snippet Detector model
small binary _
on-device model no instrument .

Composing Models: Retrieval Augmented
Generation (RAG)

LLM
% (3) Generate
u, o :

_ Figure by Leonie Monigatti

https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-langchain-implementation-4e9bd5f6a4f2

Documenting Model
Inference Interfaces

Why Documentation

Model inference between teams:

o Data scientists developing the model

« Other data scientists using the model, evolving the model
o Software engineers integrating the model as a component
o Operators managing model deployment

Will this model work for my problem?

What problems to anticipate?

Classic APl Documentation

float computeDeductions(float agl, Expenses expenses);

What to document for models?

Documenting Input/Output Types for
Inference Components

: string,
: string,
: string,
: number,
A
object (BoundingPoly)

From Google’s public object detection API.

https://cloud.google.com/vision/docs/object-localizer

Documentation beyond |I/O Types

Intended use cases, model capabilities and limitations
Supported target distribution (vs preconditions)

Accuracy (various measures), incl. slices, fairness

Latency, throughput, availability (service level agreements)
Model qualities such as explainability, robustness, calibration
Ethical considerations (fairness, safety, security, privacy)

Example for OCR model? How would you describe these?

Model Cards

o Proposal and template for documentation from Google
= Intended use, out-of-scope use
= Training and evaluation data
» Considered demographic factors
= Accuracy evaluations
= Ethical considerations
o 1-2 page summary
e Focused on fairness
« Widely discussed, but not frequently adopted

Mitchell, Margaret, et al. "Model cards for model reporting." In Proceedings of the Conference on
— Fairness, Accountability, and Transparency, 2019.

https://arxiv.org/abs/1810.03993

Model Details

o The TOXICITY classifier provided by Perspective API [32],
trained to predict the likelihood that a comment will be
perceived as toxic.

* Convolutional Neural Network.

* Developed by Jigsaw in 2017.

Intended Use

o Intended to be used for a wide range of use cases such as
supporting human moderation and providing feedback to
comment authors.

o Not intended for fully automated moderation.

o Not intended to make judgments about specific individuals.

Factors

o Identity terms referencing frequently attacked groups, fo-
cusing on sexual orientation, gender identity, and race.

Metrics

e Pinned AUC, as presented in [11], which measures
threshold-agnostic separability of toxic and non-toxic com-
ments for each group, within the context of a background
distribution of other groups.

Ethical Considerations

* Following [31], the Perspective API uses a set of values
to guide their work. These values are Community, Trans-
parency, Inclusivity, Privacy, and Topic-neutrality. Because
of privacy considerations, the model does not take into ac-
count user history when making judgments about toxicity.

Quantitative Analyses

Pinned AUC by Unitary Groups (Version 1)

‘walll -0 NON mn

& S & & & & g
B & ,@"‘7 & & & F

&

Pinne

Model Card - Toxicity in Text

Training Data

* Proprietary from Perspective AP Following details in [11]
and [32], this includes comments from a online forums such
as Wikipedia and New York Times, with crowdsourced
labels of whether the comment is “toxic”.

o “Toxic” is defined as “a rude, disrespectful, or unreasonable
comment that is likely to make you leave a discussion.”

Evaluation Data

o A synthetic test set generated using a template-based ap-
proach, as suggested in [11], where identity terms are
swapped into a variety of template sentences.

o Synthetic data is valuable here because [11] shows that
real data often has disproportionate amounts of toxicity
directed at specific groups. Synthetic data ensures that we
evaluate on data that represents both toxic and non-toxic
statements referencing a variety of groups.

Caveats and Recommendations

o Synthetic test data covers only a small set of very specific
comments. While these are designed to be representative of
common use cases and concerns, it is not comprehensive.

Pinned AUC by Unitary Groups (Version 5)

NIRRT

&

Pinned AUC by Intersectional Groups (Version 5)

— Example from Model Cards paper

63

Limitations

The following factors may degrade the model's performance.

Y
"l
-—
Object size: Object size must be at least 1% of the image “Things” vs "stuff”: Model was designed to detect Lighting: Poor or harsh, high-contrast illumination (e.g.
area to be detected. discrete objects with clearly discernible shapes (“things”), nighttime, back-lit, side-lit) may degrade model
not a group of overlapping objects or background clutter performance.
(“stuff”).

- »

= mmy B
-y

BN s
v E

Occlusion or clutter: Partially obstructed or truncated Camera positioning and lens type: Camera angle and Blur or noise: Blurry objects, rapid movement between
objects may not be detected. For example, a shirt positioning (e.g. oblique angles, long-distance), and lens frames, or encoding/decoding noise may degrade model
underneath a jacket, or where less than 25% of an object type (e.g. fisheye) may impact model performance. performance.

is visible in the image.

— From: https:/modelcards.withgoogle.com/object-detection

https://modelcards.withgoogle.com/object-detection

FactSheets

Proposal and template for documentation from IBM; intended to communicate
intended qualities and assurances

Longer list of criteria, including

o Service intention, intended use

o Technical description

o Target distribution

o« Own and third-party evaluation results

o Safety and fairness considerations, explainability
e Preparation for drift and evolution

e Security, lineage and versioning

Arnold, Matthew, et al. "FactSheets: Increasing trust in Al services through supplier's declarations of
= conformity." IBM Journal of Research and Development 63, no. 4/5 (2019): 6-1.

https://arxiv.org/pdf/1808.07261.pdf

Recall: Correctness vs Fit

Without a clear specification a model is difficult to document
Need documentation to allow evaluation for fit

Description of target distribution is a key challenge

Design Patterns for Al
Enabled Systems

(no standardization, yet)

Design Patterns are Codified Design
Knowl.

Vocabulary of design problems and solutions

Publisher

«interface»

- subscribers: Subscriber(] <O—> Subscriber

foreach (s in subscribers) - mainState
s.update(this)

+ update(context)
+ subscribe(s: Subscriber)

+ unsubscribe(s: Subscriber) %
mainState = newState - nutifySubscriberS{] Concrete L
notifySubscribers() + mainBusinessLogic() Subscribers
4\ g i
s = new ConcreteSubscriber) |~ | |
publisher.subscribe(s) I update(context)
i

Client

Example: Observer pattern object-oriented design pattern describes a
= solution how objects can be notified when another object changes -

Common System Structures

Client-server architecture

Multi-tier architecture

Service-oriented architecture and microservices
Event-based architecture

Data-flow architecture

Multi-Tier Architecture

Presentation Tier Logic Tier Data Tier
=4
— —p i — @,
: User Interface BUS.' ness Database 3
T] <+—{ Logic . &
2! ! A
3! v Y
! D Dat =
— 4| Data -] 28 — =P Data Lake D
Collection Processing g
: T o
Y l o
1 Q
Model | I 3,
Inference I @
A |
| |
|
Model i
Training "
Architectural tier —p Business data flow
[] Component . »>» ML runtime data flow

— P> ML development data flow

Based on: Yokoyama, Haruki. "Machine learning system architectural pattern for improving
— operational stability." In Int'l Conf. Software Architecture Companion, pp. 267-274. IEEE, 2019.

Microservices

Content Deliv. Cache h
Engine 8 »

Mobile App 1

(Client) 8 L

Content Deliv.

Service 8

Audio Assets Download
Assets 8 Metadata 8 Service 8

— 2 >

Users

Ownership Activation Stats

B B

Service [C) Datastorage - Calls

_ (more later)

Patterns for ML-Enabled Systems

o Stateless/serverless Serving Function Pattern
o Feature-Store Pattern

o Batched/precomuted serving pattern

o Two-phase prediction pattern

o Batch Serving Pattern

o Decouple-training-from-serving pattern

Anti-Patterns

« Big Ass Script Architecture

o Dead Experimental Code Paths
o Glue code

« Multiple Language Smell

o Pipeline Jungles

e Plain-Old Datatype Smell

o Undeclared Consumers

See also: Washizaki, Hironori, Hiromu Uchida, Foutse Khomh, and Yann-Gaél Guéhéneuc.
"Machine Learning Architecture and Design Patterns." Draft, 2019; Sculley, et al. "Hidden
— technical debt in machine learning systems." In NeurlPS, 2015.

http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Summary

Model deployment seems easy, but involves many design decisions

« What models to use?

e Where to deploy?

« How to design feature encoding and feature engineering?
« How to compose with other components?

« How to document?

e How to collect telemetry?

Problem-specific modeling and analysis: Gather estimates, consider design
alternatives, make tradeoffs explicit

Codifying design knowledge as patterns

Further Readings

« Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design patterns.
O’'Reilly Media, 2020.

o Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. “Model cards for model
reporting.” In Proceedings of the conference on fairness, accountability, and transparency, pp.
220-229. 2019.

 Arnold, Matthew, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta,
Aleksandra Mojsilovi¢, Ravi Nair, Karthikeyan Natesan Ramamurthy, Darrell Reimer, Alexandra
Olteanu, David Piorkowski, Jason Tsay, and Kush R. Varshney. “FactSheets: Increasing trust in Al
services through supplier’s declarations of conformity.” IBM Journal of Research and
Development 63, no. 4/5 (2019): 6-1.

« Yokoyama, Haruki. “Machine learning system architectural pattern for improving operational
stability.” In 2019 IEEE International Conference on Software Architecture Companion (ICSA-C),
pp. 267-274. IEEE, 2019.

Machine Learning in Production/Al Engineering o Christian Kaestner & Claire Le Goues, Carnegie Mellon University e Spring 2024

