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Back to QA...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance, Safety
versioning,
reproducibility

Security and
privacy

Fairness Interpretability
and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture




Learning Goals

e Design telemetry for evaluation in practice

« Understand the rationale for beta tests and chaos experiments

« Plan and execute experiments (chaos, A/B, shadow releases, ...) in
production

o Conduct and evaluate multiple concurrent A/B tests in a system

o Perform canary releases

o Examine experimental results with statistical rigor

o Support data scientists with monitoring platforms providing
insights from production data



Readings

Required Reading:
e Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine

Learning Engineering." Apress, 2018, Chapters 14 and 15
(Intelligence Management and Intelligent Telemetry).

Suggested Readings:

. Alec Warner and Stépan Davidovi¢. "Canary Releases." in The Site
Reliability Workbook, O'Reilly 2018

« Kohavi, Ron, Diane Tang, and Ya Xu. "Trustworthy Online Controlled
Experiments: A Practical Guide to A/B Testing." Cambridge
University Press, 2020.


https://www.buildingintelligentsystems.com/
https://landing.google.com/sre/workbook/chapters/canarying-releases/
https://landing.google.com/sre/books/
https://bookshop.org/books/trustworthy-online-controlled-experiments-a-practical-guide-to-a-b-testing/9781108724265

From Unit Tests to Testing
In Production

(in traditional software systems)



Unit Test, Integration Tests, System Tests

M

Unit testing Integration testing System testing Acceptance
testing

(Demonstration)



Speaker notes

Testing before release. Manual or automated.



a Release




Speaker notes

Early release to select users, asking them to send feedback or report issues. No telemetry in early days.



Crash Telemetry
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Speaker notes

With internet availability, send crash reports home to identify problems "in production”. Most ML-based systems are online in some form and allow telemetry.
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Speaker notes

Usage observable online, telemetry allows testing in production. Picture source: https://www.designforfounders.com/ab-testing-examples/


https://www.designforfounders.com/ab-testing-examples/

Chaos Experiments
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https://en.wikipedia.org/wiki/Chaos_engineering

Speaker notes

Deliberate introduction of faults in production to test robustness.



Model Assessment In
Production

Ultimate held-out evaluation data: Unseen real user data



Limitations of Offline Model Evaluation

Training and test data drawn from the same population

e i.i.d.: iIndependent and identically distributed
« leakage and overfitting problems quite common

Is the population representative of production data?

If not or only partially or not anymore: Does the model generalize
beyond training data?



ldentify Feedback Mechanism in
Production

Live observation in the running system
Potentially on subpopulation (A/B testing)

Need telemetry to evaluate quality -- challenges:

« Gather feedback without being intrusive (i.e., labeling outcomes),
without harming user experience

« Manage amount of data

o Isolating feedback for specific ML component + version



Discuss how to collect feedback



Speaker notes

More:

« SmartHome: Does it automatically turn of the lights/lock the doors/close the window at the right time?
« Profanity filter: Does it block the right blog comments?

« News website: Does it pick the headline alternative that attracts a user’s attention most?

« Autonomous vehicles: Does it detect pedestrians in the street?
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Speaker notes

Expect only sparse feedback and expect negative feedback over-proportionally
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Speaker notes

Can just wait 7 days to see actual outcome for all predictions
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Yeah. So there's a slight story behind that. So back when | was in, uh, Undergrad, |
wrote a program for myself to measure a, the amount of time | did data entry from
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Speaker notes

Clever Ul design allows users to edit transcripts. Ul already highlights low-confidence words, can



Manually Label Production Samples

Similar to labeling learning and testing data, have human annotators

amazon




Summary: Telemetry Strategies

« Wait and see

o Ask users

« Manual/crowd-source labeling, shadow execution
o Allow users to complain

o Observe user reaction



Breakout: Design Telemetry in Production

Discuss how to collect telemetry (Wait and see, ask users,
manual/crowd-source labeling, shadow execution, allow users to

complain, observe user reaction)

Scenarios:
« Front-left: Amazon: Shopping app feature that detects the shoe

brand from photos
« Front-right: Google: Tagging uploaded photos with friends' hames

o Back-left: Spotify: Recommended personalized playlists
o Back-right: Wordpress: Profanity filter to moderate blog posts

= (no need to post in slack yet)



Measuring Model Quality with Telemetry

e Usual 3 steps: (1) Metric, (2) data collection (telemetry), (3) operationalization
o Telemetry can provide insights for correctness

= sometimes very accurate labels for real unseen data

= sometimes only mistakes

= sometimes delayed

» Often just samples

» often just weak proxies for correctness
o Often sufficient to approximate precision/recall or other model-quality

measures

e Mismatch to (static) evaluation set may indicate stale or unrepresentative data
o Trend analysis can provide insights even for inaccurate proxy measures



Breakout: Design Telemetry in Production

Discuss how to collect telemetry, the metric to monitor, and how to
operationalize

Scenarios:
o Front-left: Amazon: Shopping app detects the shoe brand from photos

o Front-right: Google: Tagging uploaded photos with friends' names

o Back-left: Spotify: Recommended personalized playlists
o Back-right: Wordpress: Profanity filter to moderate blog posts

As a group post to #lecture and tag team members:



Speaker notes

about 30 minutes to here



Monitoring Model Quality in Production

« Monitor model quality together with other quality attributes (e.g.,
uptime, response time, load)
o Set up automatic alerts when model quality drops
o Watch for jumps after releases
» roll back after negative jump
o Watch for slow degradation
= Stale models, data drift, feedback loops, adversaries
o Debug common or important problems
= Monitor characteristics of requests
» Mistakes uniform across populations?
» Challenging problems -> refine training, add regression tests
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Prometheus and Grafana
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https://prometheus.io/docs/introduction/overview/
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Many commercial solutions

Service Health

Track this deployment's latency, throughput, and error rate

Model Current = Resolution Monthly = %> Refresh

2019-05-01 2019-07-19

2018-10-05 .—.—.7\.

Total Predictions Total Requests Requests over 2000 ms © Median v Response Time (ms) @ Median * Execution Time (ms) @

3.17M 790.98k 284 36 27

Median | Peak Load (calls/minute) Data Error Rate @

System Error Rate @ Consumers € Cache Hit Rate ©

7130 0.004% 0.000% 19 99.990%

Median Response Time (ms)

Time of Prediction

e.g. https:/www.datarobot.com/platform/mlops/

— Many pointers: Ori Cohen "Monitor! Stop Being A Blind Data-Scientist." Blog 2019


https://www.datarobot.com/platform/mlops/
https://www.datarobot.com/platform/mlops/
https://towardsdatascience.com/monitor-stop-being-a-blind-data-scientist-ac915286075f

Detecting Drift

Static models Refreshed models

Model Quality
Model Quality

Time

Time

Image source: Joel Thomas and Clemens Mewald. Productionizing Machine Learning: From
— Deployment to Drift Detection. Databricks Blog, 2019


https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html

Engineering Challenges for Telemetry



Engineering Challenges for Telemetry

o Data volume and operating cost
= e.g., record "all AR live translations"?
» reduce data through sampling
= reduce data through summarization (e.g., extracted features
rather than raw data; extraction client vs server side)
o Adaptive targeting
« Biased sampling
o Rare events
e Privacy
o Offline deployments?




Breakout: Engineering Challenges in
Telemetry

Discuss: Cost, privacy, rare events, bias

Scenarios:

« Front-left: Amazon: Shopping app feature that detects the shoe
brand from photos

o Front-right: Google: Tagging uploaded photos with friends' names

o Back-left: Spotify: Recommended personalized playlists

o Back-right: Wordpress: Profanity filter to moderate blog posts

(can update slack, but not needed)



Telemetry for Training: The
ML Flywheel



o~
]

Better product More data

Smarter algorithms

graphic by CBInsights


https://www.cbinsights.com/research/team-blog/data-network-effects/

Revisiting Model Quality vs
System Goals



Model Quality vs System Goals

Telemetry can approximate model accuracy

Telemetry can directly measure system qualities, leading indicators,
user outcomes

o define measures for "key performance indicators"

o clicks, buys, sighups, engagement time, ratings

o operationalize with telemetry



Model Quality vs System Quality
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Save 20% or maore on your next booking 1o get 2021 off to a good start.
Find deals
Chicago

Bernardi, Lucas, et al. "150 successful machine learning models: 6 lessons learned at Booking.com."
— In Proc. Int'l Conf. Knowledge Discovery & Data Mining, 2019.




Possible causes of model vs system
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Speaker notes

hypothesized

« model value saturated, little more value to be expected

e segment saturation: only very few users benefit from further improvement
 overoptimization on proxy metrics not real target metrics

« uncanny valley effect from "creepy Als"



Breakout: Designh Telemetry in Production

Discuss: What key performance indicator of the system to collect?

Scenarios:

« Front-left: Amazon: Shopping app feature that detects the shoe
brand from photos

o Front-right: Google: Tagging uploaded photos with friends' names

o Back-left: Spotify: Recommended personalized playlists

o Back-right: Wordpress: Profanity filter to moderate blog posts

(can update slack, but not needed)



Experimenting in
Production

« A/B experiments

« Shadow releases / traffic teeing
e Blue/green deployment

o Canary releases

o Chaos experiments
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https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1620720537805922306%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Frunner%2Fwork%2Fs2024%2Fs2024%2Flectures%2F_static%2F10_qainproduction%2Fqainproduction.html%3Fprint-pdfshowNotes%3Dseparate-pagepdfMaxPagesPerSlide%3D1%2F&tweet_id=1620720537805922306
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1620720537805922306%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Frunner%2Fwork%2Fs2024%2Fs2024%2Flectures%2F_static%2F10_qainproduction%2Fqainproduction.html%3Fprint-pdfshowNotes%3Dseparate-pagepdfMaxPagesPerSlide%3D1%2F&in_reply_to=1620720537805922306
https://twitter.com/Grady_Booch/status/1620720537805922306?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1620720537805922306%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Frunner%2Fwork%2Fs2024%2Fs2024%2Flectures%2F_static%2F10_qainproduction%2Fqainproduction.html%3Fprint-pdfshowNotes%3Dseparate-pagepdfMaxPagesPerSlide%3D1%2F

A/B Experiments



What if...?

e ... we hand plenty of subjects
for experiments

o ... we could randomly assign to
treatment and control group
without them knowing

o ... We could analyze small
individual changes and keep
everything else constant

» |ldeal conditions for controlled
experiments

Valentine's
Day deals

Amazon Devices




A/B Testing for Usability

 In running system, random users are shown modified version
« Outcomes (e.g., sales, time on site) compared among groups

Original: 2.3% Long Form: 4.3%
£ rotue il [ 4 Groove £

SaaS'& eCommerce e Everything you need to deliver awesome,
€ustomer Support | personal support to every customer.
‘ Assbgn akippon emakls (o the ght people, feel conlident 1hat customes

You'll be up and running in less than a minute.
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Picture source: https://www.designforfounders.com/ab-testing-examples/


https://www.designforfounders.com/ab-testing-examples/
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Bing Experiment

o Experiment: Ad Display at Bing

o Suggestion prioritzed low

o Not implemented for 6 month

e Ran A/B test in production

o Within 2h revenue-too-high alarm
triggered suggesting serious bug
(e.g., double billing)

e Revenue increase by 12% - $100M
anually in US

e Did not hurt user-experience metrics

From: Kohavi, Ron, Diane Tang, and Ya Xu.
"Trustworthy Online Controlled Experiments: A

Practical Guide to A/B Testing." 2020.


https://bookshop.org/books/trustworthy-online-controlled-experiments-a-practical-guide-to-a-b-testing/9781108724265

A/B Experiment for ML Components?

« New product recommendation algorithm for web store?
« New language model in audio transcription service?
« New (offline) model to detect falls on smart watch




Experiment Size

With enough subjects (users), we can run many many experiments
Even very small experiments become feasible

Toward causal inference

" Get Started Now VS " Get Started Now

It's free! No trials, no fees, It's free! No trials, no fees,
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about an hour in



Implementing A/B Testing

Implement alternative versions of the system

o using feature flags (decisions in implementation)
« separate deployments (decision in router/load balancer)

Map users to treatment group

« Randomly from distribution
o Static user - group mapping
« Online service (e.g., launchdarkly, split)

Monitor outcomes per group
o Telemetry, sales, time on site, server load, crash rate


https://launchdarkly.com/
https://www.split.io/

Speaker notes

divide them into groups



Feature Flags (Boolean flags)

1f (features.enabled(userlId,

} else {

}

o Good practices: tracked explicitly, documented, keep them localized and
independent
o External mapping of flags to customers, who should see what configuration
» e.g., 1% of users sees one_click_checkout, but always the same users; or

50% of beta-users and 90% of developers and 0.1% of all users

def i1skEnabled(user): Boolean = (hash(user.id) % 100) < 10




Speaker notes

mapping somewhere One way of doing this randomly is hashing user ID random but stable same users always in the same group some offset to get a new sample for
telemetry you need to know what group a user was in. Once you have a mapping from flags here then it's easier you can also use a load balancer to manage this you need
an if statement somewhere chrome, facebook, if statements are in the backend/code



¥ Treatments @ | 2 treatments, if Split is killed serve the default treatment of "off

Treatment Default Description
on O The new version of registration process iz enabled.
off . (-] The old version of registration process is enabled.

@ 2dd treatment | Learn more about multivariate treatments.
¥ Whitelist @ | 0 user(s) or segments individually targeted.

@ Add whitelist

¥ Traffic Allocation @ | 1

of user included in Split rules evaluation

Total Traffic Allocation: —I 100

¥ Targeting Rules (@ | 2 rules created for targeting.

° user »  isinsegment A qa

®

user »  isinsegment ~ beta_testers

®

° Add rule

¥ Default Rule (@ | serve treatment of "off~

serve . off ~

total User in Split

Then serve on

Then serve percentage

+Q

+Q
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There are companies that do this as a service exposre your database. "boolean option as a service" most groups in the past have done it themselves

launch darkley, pslit 10, open source libraries gets complicated when you want to do multiple experiments, factorial design gets complicated the bing team wrote a whole
book



Confidence in A/B
Experiments

(statistical tests)



Comparing Averages

Group A

classic personalized content
recommendation model

2158 Users

average 3:13 min time on site

Group B

updated personalized content
recommendation model

10 Users

average 3:24 min time on site



Speaker notes
What's the problem here? t test assumes a normal distribution

statistical tests to see If it's random event

who here knows about the t test? It's one of the standard tests for this kind of thing.



Comparing Distributions




Speaker notes

means of the real distsurbitons from which this are sampled, chances that they're actually different

t test captures that, it's old/simple, it's robust enough for almost everything we're doing here

Originally for agriculture, all about barley vs. hops, it's about beer

milestone 3 we're going to ask for statistical confidence, T test is fine.
all these tools implement this .



Different effect size, same deviations




Same effect size, different deviations

Less noise --> Easier to recognize



Dependent vs. independent measurements

Pairwise (dependent) measurements

o Before/after comparison
o With same benchmark + environment
e €.8., Nnew operating system/disc drive faster

Independent measurements

e Repeated measurements
 Input data regenerated for each measurement



Significance level

o Statistical change of an error
o Define before executing the experiment
= use commonly accepted values
» based on cost of a wrong decision
« Common:
= 0.05 significant
= 0.01 very significant
o Statistically significant result # proof
o Statistically significant result = important result
« Covers only alpha error (more later)



Intuition: Error Model

e 1 random error, influence +/- 1
e Real mean: 10
e Measurements: 2 (50%) und 11 (50%)

e 2 random errors, each +/- 1
e Measurements: 8 (25%), 10 (50%) und 12 (25%)

« 3 random errors, each +/- 1
« Measurements : 7 (12.5%), 9 (37.5), 11 (37.5), 12 (12.5)



Normal Distribution

0.4

Probability Density
o o
N w

o
N

0.0

-20 -1o 0 10 20
Standard Deviations from the Mean

30

40

— (CC 4.0 D Wells)


https://commons.wikimedia.org/wiki/File:Standard_Normal_Distribution.png

Confidence Intervals




Comparison with Confidence Intervals

mean w/ 95% confidence interval
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Source: Andy Georges, et al. 2007. Statistically rigorous java performance evaluation. In Proc.
— Conference on Object-Oriented Programming Systems and Applications.


https://dri.es/files/oopsla07-georges.pdf

> t.test(x, y, conf.level=0.9)

Welch Two Sample t-test

= 1.9988, df = 95.801, p-value = 0.04846
alternative hypothesis: true difference in means 1s
not equal to 0

90 percent confidence interval:
©.3464147 3.7/520619

sample estimates:

mean of X mean of




Experiment Created Edit Remove De e @ Test it out is beating Original Page by
+25.4%.

The percentage of visitors who clicked on a tracked elemeant.

Variations Statistics
Experiment Conversions / Visitors Conversion Rate Baseline Chance to beat Baseline Improvement
Test it out 462 / 3,568 12.9% (+1.1%) - o 100.0% +25.4%
Give it a try 440/ 3,479 12.6% (£1.1%) - o s0.9% +22.5%
Try it out 295/ 3,504 11.3% (+1.0%) - 9i0.2% +9.2%
Original Page 378/ 3,662 10.3% (£1.0%) | o

Conversion Rate Over Time
20

15
9 T
B
(]
E 10 - -
s
=
§ s

May. 8 May. 12 May. 16 May. 20 May. 24 May. 28 Jun. 1 Jun. 5 Jun. 9 Jun. 13
May. 10 May. 14 May. 1B May. 22 May. 26 May. 30 Jun. 3 Jun. 7 Jun. 11

| — Original Page Try it out — Test it out — Give it a try |

— Source: https://conversionsciences.com/ab-testing-statistics/


https://conversionsciences.com/ab-testing-statistics/
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— Source: https:/cognetik.com/why-you-should-build-an-ab-test-dashboard/


https://cognetik.com/why-you-should-build-an-ab-test-dashboard/

How many samples needed?

Too few? Too many?
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50/50? New model vs. old model about 1:10 to here inherently risky, so you don't want too many in experiment



A/B testing automation

o Experiment configuration through DSLs/scripts

« Queue experiments

o Stop experiments when confident in results

« Stop experiments resulting in bad outcomes (crashes, very low
sales)

o Automated reporting, dashboards

Further readings:



DSL for scripting A/B tests at Facebook

button_color = uniformChoice(
choilces=|[ ,
unit=cookieid);

button_text = weightedChoice(
choices=|[ ,
welghts=[0.8, 0.2],
unit=cookieid);

1f (country == ) {
has translate = bernoulliTrial (p=0. unit=userid

Further readings: Bakshy, Eytan et al. Designing and deploying online field experiments. Proc.
= WWW, 2014. (Facebook)



https://arxiv.org/pdf/1409.3174

Concurrent A/B testing

Multiple experiments at the same time

o Independent experiments on different populations -- interactions
not explored

o Multi-factorial designs, well understood but typically too complex,
e.g., not all combinations valid or interesting

« Grouping in sets of experiments (layers)

Further readings:



Other Experiments in
Production

Shadow releases / traffic teeing
Blue/green deployment
Canary releases

Chaos experiments



Shadow releases / traffic teeing

Run both models in parallel
Use predictions of old model in production
Compare differences between model predictions

If possible, compare against ground truth labels/telemetry

Examples?



Blue/green deployment

Provision service both with old and new model (e.g., services)

Support immediate switch with load-balancer

Allows to undo release rapidly

Advantages/disadvantages?



Canary Releases

Release new version to small
percentage of population (like
A/B testing)

Automatically roll back if quality
measures degrade

Automatically and incrementally
Increase deployment to 100%
otherwise




Chaos Experiments

| sIM« e <

RN



https://en.wikipedia.org/wiki/Chaos_engineering

Chaos Experiments for ML Components?
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Artifically reduce model quality, add delays, insert bias, etc to test monitoring and alerting infrastructure



Advice for Experimenting in Production

Minimize blast radius (canary, A/B, chaos expr)

Automate experiments and deployments

Allow for quick rollback of poor models (continuous delivery,
containers, loadbalancers, versioning)

Make decisions with confidence, compare distributions

Monitor, monitor, monitor



Bonus: Monitoring without
Ground Truth



Invariants/Assertions to Assure with
Telemetry

Consistency between multiple sources
= e.g., multiple models agree, multiple sensors agree
= e.g., text and image agree
Physical domain knowledge
= e.g., cars in video shall not flicker,
= e.g., earthquakes should appear in sensors grouped by geography
Domain knowledge about unlikely events
= e.g., unlikely to have 3 cars in same location
Stability
= e.g., object detection should not change with video noise
Input conforms to schema (e.g. boolean features)
And all invariants from model quality lecture, including capabilities



Summary

Production data is ultimate unseen validation data

Both for model quality and system quality

Telemetry is key and challenging (design problem and opportunity)
Monitoring and dashboards

Many forms of experimentation and release (A/B testing, shadow
releases, canary releases, chaos experiments, ...) to minimize "blast
radius"; gain confidence in results with statistical tests



Further Readings

« On canary releases: Alec Warner and St&pan Davidovi¢. “Canary Releases.” in
The Site Reliability Workbook, O'Reilly 2018

o Everything on A/B testing: Kohavi, Ron. Trustworthy Online Controlled
Experiments: A Practical Guide to A/B Testing. Cambridge University Press, 2020.

o A/B testing critiques: Josh Constine. The Morality Of A/B Testing. Blog 2014;
the Center of Humane Technology; and the Netflix documentary The Social
Dilemma

o Ori Cohen “Monitor! Stop Being A Blind Data-Scientist.” Blog 2019

e Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Kastner.
Exploring Differences and Commonalities between Feature Flags and

Configuration Options. In Proceedings of the Proc. International Conference on
Software Engineering|CSE-SEIP, pages 233-242, May 2020.


https://landing.google.com/sre/workbook/chapters/canarying-releases/
https://landing.google.com/sre/books/
https://bookshop.org/books/trustworthy-online-controlled-experiments-a-practical-guide-to-a-b-testing/9781108724265
https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/
https://www.humanetech.com/
https://en.wikipedia.org/wiki/The_Social_Dilemma
https://towardsdatascience.com/monitor-stop-being-a-blind-data-scientist-ac915286075f
https://www.cs.cmu.edu/~ckaestne/pdf/icseseip20.pdf

Machine Learning in Production/Al Engineering o Christian Kaestner & Claire Le Goues, Carnegie Mellon University e Spring 2024



