

Infrastructure Quality...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance,
versioning,
reproducibility

Safety

Security and
privacy

Fairness Interpretability

and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture

Readings

Required reading: Eric Breck, Shanqging Cai, Eric Nielsen, Michael
Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big

Data (2017)

Recommended readings:

o O'Leary, Katie, and Makoto Uchida. "Common problems with
Creating Machine Learning Pipelines from Existing Code." Proc.
Conference on Machine Learning and Systems (MLSys) (2020).

https://research.google.com/pubs/archive/46555.pdf
https://research.google/pubs/pub48984.pdf

Learning Goals

« Decompose an ML pipeline into testable functions

o Implement and automate tests for all parts of the ML pipeline

o Understand testing opportunities beyond functional correctness

o Describe the different testing levels and testing opportunities at
each level

o Automate test execution with continuous integration

ML Pipelines

I\R/Ig dj ilr o- Data Data Data Feature Model
mecr‘]ts Collection Labeling Cleaning Engineer. Training

D=

Model
Evaluation

)=

Model De-
ployment

DE

Model
Monitoring

)

All steps to create (and deploy) the model

Common ML Pipeline

Speaker notes

Computational notebook

Containing all code, often also dead experimental code

Notebooks as Production Pipeline?

vmware Tanzu Why Tanzu Products Consulting Get Started Resources

Blog PRODUCTS CASE STUDIES MODERMIZATION BEST PRACTICES DEVOPS BEST PRACTICES TUTORIALS TN

How Data Scientists Can Tame Jupyter
Notebooks for Use in Production
Systems

JULY 12, 2018 TIMOTHY KOPP

Uncounted pixels have been spilled about how great Jupyter Notebooks are (shameless plug: I've

spilled some of those pixels myself). Jupyter Notebooks allow data scientists to quickly iterate as

_ Parameterize and use nbconvert?

https://tanzu.vmware.com/content/blog/how-data-scientists-can-tame-jupyter-notebooks-for-use-in-production-systems

Real Pipelines can be Complex

gggilre Data Data Data Feature Model Model Model De-
ments Collection Labeling Cleaning Engineer. Training Evaluation ployment

Model
Monitoring

NN SN/

System Data entry deS|gn, Labellng interface, Domain expertise, Distributed data Model Integration
requirements Data scraping, Crowdsourcing design, Feature server, storage and inference testing,
Telemetry design ~ Weak supervision Data quality computing requirem. A/B testing

Model
inference
service

System monltoring,
telemetry

Real Pipelines can be Complex

Large arguments of data
Distributed data storage
Distributed processing and learning
Special hardware needs

Fault tolerance

Humans in the loop

Possible Mistakes in ML Pipelines

eeeeeeeeeeeeeeeeeeeeeeeeee
nn

MMMMM
ooooooooo

=)

Danger of "silent" mistakes in many phases

Examples?

Possible Mistakes in ML Pipelines

Danger of "silent" mistakes in many phases:

o Dropped data after format changes

o Failure to push updated model into production
 Incorrect feature extraction

o Use of stale dataset, wrong data source

« Data source no longer available (e.g web API)

o Telemetry server overloaded

« Negative feedback (telemtr.) no longer sent from app
o Use of old model learning code, stale hyperparameter
« Data format changes between ML pipeline steps

Pipeline Thinking

After exploration and prototyping build robust pipeline
One-off model creation -> repeatable automateable process
Enables updates, supports experimentation

Explicit interfaces with other parts of the system (data sources,
labeling infrastructure, training infrastructure, deployment, ...)

Design for change

Building Robust Pipeline Automation

o Support experimentation and evolution
= Automate
= Design for change
= Design for observability
» Testing the pipeline for robustness
o Thinking in pipelines, not models
 Integrating the Pipeline with other Components

Pipeline Testability and
Modularity

Pipelines are Code
From experimental notebook code to production code

Each stage as a function or module

Well tested in isolation and together

Robust to changes in inputs (automatically adapt or crash, no silent
mistakes)

Use good engineering practices (version control, documentation,
testing, naming, code review)

Sequential Data Science Code in
Notebooks

df = pd.read_csv(, parse_dates=True)

df [] = pd.to_datetime(df|[]).dt.month

df []= pd.to_datetime(df|[]).dt.dayofweek
df [] = boxcox(df[1, 0.4)
df.drop([], axis=1, 1inplace=True)

_ How to test??

Testability can be decomposed into...

Controllability: Observability
o Ability to influence system o Degree to which you can
internal state or behavior by determine that the behavior

changing its inputs went as expected.

Pipeline restructed into separate function

def encode_day_of_week(df):
if not in df.columns: raise ValueError(
if df.datetime.dtype != : raise ValueError(
df[1= pd.to_datetime(df|[]1).dt.day_name()
df = pd.get_dummies(df, columns = [1)
return df

def prepare_data(df):
df = clean_data(df)

Orchestrating Functions

def pipeline():
train = pd.read_csVv(, parse_dates=True)
test = pd.read_csv(, parse_dates=True)
X_traln, y_traln = prepare_data(train)

X_test, y_test = prepare_data(test)
model = learn(X_train, y_train)
accuracy = eval(model, X test, y test)
return model, accuracy

Dataflow frameworks like Luigi, DVC, Airflow, détflow, and Ploomber
support distribution, fault tolerance, monitoring, ...

— Hosted versions like DataBricks and AWS SageMaker Pipelines

https://github.com/spotify/luigi
https://dvc.org/
https://airflow.apache.org/
https://github.com/d6t/d6tflow
https://ploomber.io/
https://databricks.com/
https://aws.amazon.com/sagemaker/pipelines/

Test the Modules

def encode_day_of_week(df):
1f not 1in df.columns: raise ValueError(
1T df.datetime.dtype != : ralse ValueError(
df [1= pd.to_datetime(df[]1).dt.day_name
df = pd.get_dummies(df, columns = [1)
return df

def test_day_of_week_encoding():
df = pd.DataFrame({ | ,
encoded = encode_day_of week(df)
assert in encoded.columns

assert (encoded|] == [1, 0, 1]).all()

Subtle Bugs in Data Wrangling Code

df [] = df.Joined.dropna().map(
lambda x: x.split(Y[1].split(Y[1])

df.loc[1dx_nan_age,].loc[1dx_nan_age] =

df [].loc[1dx_nan_age].map(map_means)

].astype(str).astype(int)

Speaker notes

1 attempting to remove na values from column, not table, drops the whole data frame

2 loc[] called twice, resulting in assignment to temporary column only, goal was a slice of a slice

3 astype() is not an in-place operation. the intention is probably to change the type but it doesn’t do it in place

Subtle Bugs in Data Wrangling Code
(continued)

].apply(int)

].replace(regex=|[], value=

].astype(str).astype(float)

Speaker notes

1 attempting to remove na values from column, not table

2 loc[] called twice, resulting in assignment to temporary column only

3 astype() is not an in-place operation

4 typo in column name

5&6 modeling problem (k vs K)

Modularity fosters Testability

Breaking code into functions/modules

Supports reuse, separate development, and testing

Can test individual parts

Testing Maturity

Eric Breck, Shanqging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
= Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

Data Data

Data

Data Tests Monitoring

ML Infrastructure Model Prediction
Tests Tests Monitoring
Model Running
Code = Training - System

B Unit Tests B Integration Sy:stem
Tests Monitoring

Source: Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric
— for ML Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

Data Tests

1. Feature expectations are captured in a schema.

2. All features are beneficial.

3. No feature’s cost is too much.

4. Features adhere to meta-level requirements.

5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.

/. All input feature code is tested.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
— Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

Tests for Model Development

1. Model specs are reviewed and submitted.

2. Offline and online metrics correlate.

3. All hyperparameters have been tuned.

4. The impact of model staleness is known.

5. A simpler model is not better.

6. Model quality is sufficient on important data slices.
/. The model is tested for considerations of inclusion.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
— Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

ML Infrastructure Tests

1. Training is reproducible.

2. Model specs are unit tested.

3. The ML pipeline is Integration tested.

4. Model quality is validated before serving.
5. The model is debuggable.

6. Models are canaried before serving.

/. Serving models can be rolled back.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
— Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

Monitoring Tests

1. Dependency changes result in notification.
2. Data invariants hold for inputs.

3. Training and serving are not skewed.

4. Models are not too stale.

5. Models are numerically stable.

6. Computing performance has not regressed.
/. Prediction quality has not regressed.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
— Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

Case Study: Covid-19 Detection

(from S20 midterm; assume cloud or hybrid deployment)

https://www.youtube.com/watch?v=e62ZL3dCQWM

Breakout Groups

 In the Smartphone Covid Detection scenario
« Discuss in groups:
» Back left: data tests
= Back right: model dev. tests
» Front right: infrastructure tests
» Front left: monitoring tests
e For 8 min, discuss some of the listed point in the context of the
Covid-detection scenario: what would you do?
e In #lecture, tagging group members, suggest what top 2 tests to

implement and how

Excursion: Test Automation

From Manual Testing to Continuous
Integration

My Repositories

Build #17 - wyvernlz x |
C f B httpsy//travis-ci.org/

ern/builds/7

rernlang

Help

wyvernlang / wyvern ©

Build #17

(works on Linux, so its O

potanin authore

) ran on our legacy infrastructure. se read gur docs on he

Remove Log
Using worker: worker-linux-827f@498-1.bb.travis-ci.org:travis-linux-2

Build system informatios

% git clone --depth=58 --branch=SimpleWyvern-devel

% jdk_switcher use oraclejdkd

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to fusr/lib/j
% java -Xmx32m -version

java version "1.8.2 31"

Java(TM) SE Runtime Environment (build 1.8.8_31-bl13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b87, mixed mode)

$ javac -J1-Xmx32m -version

javac 1.8.8_31
$ cd tools

The command “cd tools” exited with @.
$ ant test

Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

4= Download Log

ava-8-oracle

33

Anatomy of a Unit Test

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencylListTest {
public void testSanityTest(){
Graph gl = new AdjacencyListGraph(10);

Vertex si new Vertex() ;
Vertex s2 new Vertex() ;

Ingredients to a Test

Specification
Controlled environment
Test inputs (calls and parameters)

Expected outputs/behavior (oracle)

Unit Testing Pitfalls

Working code, failing tests
"Works on my machine"
Tests break frequently

How to avoid?

Testability can be decomposed into...

Controllability: Observability
o Ability to influence system o Degree to which you can
internal state or behavior by determine that the behavior

changing its inputs went as expected.

Testable Code

Think about testing when writing code

Unit testing encourages you to write testable code

Separate parts of the code to make them independently testable
Abstract functionality behind interface, make it replaceable

Bonus: Test-Driven Development is a design and development
method in which you always write tests before writing code

Build systems & Continuous Integration

Automate all build, analysis, test, and deployment steps from a
command line call

Ensure all dependencies and configurations are defined
|deally reproducible and incremental
Distribute work for large jobs

Track results

Key Cl benefit: Tests are regularly executed, part of process

/ @ Build #17 - wyvernlz: x |

€« C A 8§ https://travis-ci.org/wyvernlang/wyvern/builds/79099642 e
=))

(l
1
-

Blog Status Help lonathan Aldrich 9

wyvernlang / wyvern €

My Repositories Current Branches Build Histon Pull Requests Build #17

" wyvernlang/wyvern 17 0 SimpleWyvern-devel Asserting false (works on Linux, so its O 17 pa

0 Commit fd7belc
Duration: 16 sec
Finished: 3 days ag e
potanin authored and committec 3 days ago
l'his job ran on our legacy infrastructure. Please read our docs on how to upgi

X= Remove Log 4= Download Log

Using worker: worker-linux-827f8498-1.bb.travis-ci.org:travis-linux-2 ®
Build system information

% git clone --depth=5@ --branch=5impleWyvern-devel
% jdk_switcher use oraclejdks

Switching to Oracle JDE8 (java-8-oracle), JAVA_HOME will be set to fusr/lib/jvm/java-8-oracle

Tracking Build Quality

Track quality indicators over time, e.g.,
e Build time

o Coverage

o Static analysis warnings

o Performance results

o Model quality measures

o« Number of TODOs in source code

Coverage

Tracking Model Qualities

Many tools: MLFlow, ModelDB, Neptune, TensorBoard, Weights &
Biases, Comet.m|, ...

ModelDB Example

from verta import Client
client = Client(

proj client.set_project(
expt client.set_experiment(

run = client.set_experiment_run()

run.log_hyperparameters({ : 0.5})
modell =

run.loq metric accuracv(modell, validationData

Speaker notes

ModelDB is an open-source system to version machine learning models including their ingredients code, data, config, and environment and to track ML metadata across
the model lifecycle.

Use ModelDB to:

Make your ML models reproducible Manage your ML experiments, build performance dashboards, and share reports Track models across their lifecycle including
development, deployment, and live monitoring

Minimizing and Stubbing
Dependencies

How to unit test component with
dependency on other code?

How to Test Parts of a System?

Client Code Code under test Backend
(e.g., GUI, ML pipeline) (e.g., data wrangling) (e.g., database, model)

def clean_gender(df):
def clean(row):
1T pd.isnull(row|]):
row|[] = gender_api_client.predict(row|
return row
return df.apply(clean, axis=1)

Automating Test Execution

Test driver Code under test Backend
(e.g., PyUnit tests) (e.g., data wrangling) (e.g., database, model)

def test_do_not_overwrite gender()
df = pd.DataFrame({ : 1,

1,

[np.nan, , Np.nan]})
out = clean_gender(df, model_stub)
assert(out]] == , , 1).all()

Decoupling from Dependencies

def clean_gender(df, model):
def clean(row):
1f pd.isnull(row|]):
row['gender'] = model(row]|

row|[
row|[

return row
return df.apply(clean, axis=1)

Replace concrete API with an interface that caller can parameterize

Stubbing the Dependency

Test driver Code under test Test stub

: . (e.g., database-stub,
(e.g., PyUnit tests) (e.g., data wrangling) mock-model)

def test_do_not_overwrite_gender():

def model_stub(first, last, location):
return

df = pd.DataFrame({ | ,
out = clean_gender(df, model_stub)

assert(out|] == , ,]1).all()

General Testing Strategy: Decoupling Code
Under Test

Original code

(e.g., GUI, ML pipeline)
Code under test Dependency
(e.g., data wrangling) Interface

Dependencies
(e.g., database, model)

Test driver Test stub
(e.g., PyUnit tests) (e.g., database-stub,
- mock-model)

(Mocking frameworks provide infrastructure for expressing such tests
compactly.)

Testing Error Handling /
Infrastructure Robustness

General Error Handling Strategies

Avoid silent errors

Recover locally if possible, propagate error if necessary -- fail entire
task if needed

Explicitly handle exceptional conditions and mistakes
Test correct error handling

If logging only, is anybody analyzing log files?

Test for Expected Exceptions

def test_invalid_day_of_week data()
df = pd.DataFrame({ |

with pytest.railses(ValueError):
encode_day_of_week(df)

Test for Expected Exceptions

def test_learning_fails_with_missing_data():
df = pd.DataFrame({})

with pytest.raises(NoDataError):
learn(df)

Test Recovery Mechanisms with Stub

Use stubs to inject artificial faults

from retry.api import retry_call
import pytest

class FailedConnection(Connection):
remaining_failures = 0
def _ init_ (self, failures):
self.remaining_failures = failures

Test Error Handling throughout Pipeline

Is invalid data rejected / repaired?
Are missing data updates raising errors?
Are unavailable APIs triggering errors?

Are failing deployments reported?

Log Error Occurrence

Even when reported or mitigated, log the issue
Allows later analysis of frequency and patterns

Monitoring systems can raise alarms for anomalies

Example: Error Logging

from prometheus_client import Counter
connection_timeout_counter = Counter(

/

class RetryLogger():
def warning(self, fmt, error, delay):
connection_timeout_counter.inc()

retry_logger = RetryLogger ()

Test Monitoring

o Inject/simulate faulty behavior

« Mock out notification service used by monitoring
« Assert notification

class MyNotificationService extends NotificationService {

public boolean receivedNotification = false;
public void sendNotification(String msg) {
receivedNotification = true; }

void test() {
Server s = getServer(),
MyNotificationService n = new MyNotificationService();

Monitor m = new Monitor(s, n);
s.stop();

S.request(): s.regquest

Test Monitoring in Production

Like fire drills (manual tests may be okay!)
Manual tests in production, repeat regularly

Actually take down service or trigger wrong signal to monitor

Chaos Testing

§I Nlil 1\\ S

RN

= http:/principlesofchaos.org

http://principlesofchaos.org/

Speaker notes

Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in
production. Pioneered at Netflix

Chaos Testing Argument

 Distributed systems are simply too complex to comprehensively
predict
» experiment to learn how it behaves in the presence of faults

o Base corrective actions on experimental results because they
reflect real risks and actual events

o Experimentation != testing -- Observe behavior rather then expect
specific results

« Simulate real-world problem in production (e.g., take down server,
inject latency)

o Minimize blast radius: Contain experiment scope

Netflix's Simian Army

o Chaos Monkey: randomly disable production instances

o Latency Monkey: induces artificial delays in our RESTful client-server
communication layer

o Conformity Monkey: finds instances that don’t adhere to best-practices and
shuts them down

o Doctor Monkey: monitors external signs of health to detect unhealthy instances

 Janitor Monkey: ensures cloud environment is running free of clutter and waste

o Security Monkey: finds security violations or vulnerabilities, and terminates the
offending instances

o 10-18 Monkey: detects problems in instances serving customers in multiple
geographic regions

e Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an entire
Amazon availability zone.

Chaos Toolkit

o Infrastructure for chaos experiments
« Driver for various infrastructure and failure cases
« Domain specific language for experiment definitions

Chaos Experiments for ML Infrastructure?

Speaker notes

Fault injection in production for testing in production. Requires monitoring and explicit experiments.

Where to Focus

1 ﬁf#:?:}[

Testing?

Testing in ML Pipelines
Usually assume ML libraries already tested (pandas, sklearn, etc)

Focus on custom code

« data quality checks

« data wrangling (feature engineering)
e training setup

 interaction with other components

Consider tests of latency, throughput, memory, ...

Testing Data Quality Checks

Test correct detection of problems

def test_invalid_day_of_week_data():

Test correct error handling or repair of detected problems

def test_fill missing_gender():

def test_exception_for_missing_data():

Test Data Wrangling Code

num = data.Size.replace(, regex=True).
astype(float)
factor = data.Size.str.extract(

expand =False)
factor = factor.replace([,], [10**3, 10**6]).fillna(1)
data|] = num*factor.astype(int)

4

data| 1= data]].
replace(regex =|[], value=

data| 1= data]].
replace(regex =|[], value=)

datal 1= data|].astype(str). astype(float)

Speaker notes

both attempts are broken:

e Variant A, returns 10 for “10k”
« Variant B, returns 100.5000000 for “100.5M”

Test Model Training Setup?

Execute training with small sample data

Ensure shape of model and data as expected (e.g., tensor dimensions)

Test Interactions with Other Components

Test error handling for detecting connection/data problems
« loading training data

» feature server

« uploading serialized model

« A/B testing infrastructure

Integration and system
tests

Unit test Integration test System Test

Speaker notes

Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one programmer and is stored in a single file. Different
programming languages have different units: In C++ and Java the unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit
may be the entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for units to function perfectly in isolation but to fail
when integrated. For example because they share an area of the computer memory or because the order of invocation of the different methods is not the one anticipated by
the different programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.) that make up the product delivered to the customer.
System testing focuses on defects that arise at this highest level of integration. Typically system testing includes many types of testing: functionality, usability, security,
internationalization and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the customer accepting the software and giving us their
money. From the customer's point of view, they would generally like the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the
vendor's point of view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical strategic questions that should be
addressed before acceptance testing are: Who defines the level of the acceptance testing? Who creates the test scripts? Who executes the tests? What is the pass/fall
criteria for the acceptance test? When and how do we get paid?

Integration and system tests

Test larger units of behavior

Often based on use cases or user stories -- customer perspective

vold gameTest() {

Poker game = new Poker();
Player p = new Player();
Player g = new Player();
game.shuffle(seed)
game.add(p);

game.add(q);

game.deal();

p.bet(100);

g. bet(l@@),

Integration tests

Test combined behavior of multiple functions

def test_cleaning_with_feature_eng() {
d = load_test_data();
cd = clean(d);

f = feature3d.encode(cd);
assert(no_missing_values(f[1));
assert(max(f[1) <= 1.0);

Test Integration of Components

function predict_price(data, models, timeoutms) {
const requests = models.map(model => rpc(model, data, {time

return Promise.all(requests).then(predictions
const success = predictions.filter(v => v
if (success.length < 2) throw new Error(
return success.reduce((a, b) => a + b, 0) / success.le

1)

End-To-End Test of Entire Pipeline

def test_pipeline():
train = pd.read_csVv(, parse_date
test = pd.read_csv(, parse_dates=True
X_tralin, y_traln = prepare_data(train)

X_test, y_test = prepare_data(test)
model = learn(X_train, y_train)
accuracy = eval(model, X test, y test)
assert accuracy > 0.9

System Testing from a User Perspective

Test the product as a whole, not just components
Click through user interface, achieve task (often manually performed)
Derived from requirements (use cases, user stories)

Testing in production

The V-Model of Testing

System validation plan

Requirements

analysis

_ _ Integration test plan
Archltectu ral deSIQn ---------------------

. Unit test plan
Low-level design f----"---""-"-"-

Implementation

System testing /

testing in production

Integration testing

Unit testing

Code Review and Static
Analysis

Code Review

Manual inspection of code

« Looking for problems and possible improvements
o Possibly following checklists
o Individually or as group

Modern code review: Incremental review at checking

« Review individual changes before merging

o Pull requests on GitHub

o Not very effective at finding bugs, but many other benefits:
knowledge transfer, code imporvement, shared code ownership,
Improving testing

I O Refactorings by ckaestne . %\ |

€« > C

GitHub, Inc. [US] | https://github.com/ckaestne/TypeChef/pull/28

L,

&

Qldedi: R w PO WO =

GitHub This repository Search Explore Features Enterprise Blog

ckaestne / TypeChef

Refactorings #28

joliebig merged 17 commits iNt0 1iveness from ca1isrsph 9 months ago

W™ Conversation 3 -0 Commits 17 [%] Files changed o7

- ckaestne commented on Jan 29 Crarmer

@joliebig
Flease have a look whether you agree with these refactorings in CRewrite

key changes: Moved ASTNawvigation and related classes and tumed EnforceTreeHelper into an object

E ckaestne added some commits on Jan 29

. remove obsolete test cases @2 dddbe
. refactoring: move AST helper classes to CRewrite package where it is .. = fafc3l
. improve readability of test code 7eelal
[l revoved unused fields + fish3s

- ckaestne commented on Jan 29 Crarmer

Can one of the admins venfy this patch?

El o im e B v ol ol ol i s e e i e s . Do WY

+ Star 20 YW Fork | 12

L8
@
+1,149 —10,129 EINEE

n
Labels d~
Mone yet

fhe
Milestone
Mo milestone
Asszignee

Mo one assigned

2 participants

F

Subtle Bugs in Data Wrangling Code

df [] = df.Joined.dropna().map(
lambda x: x.split(Y[1].split(Y[1])

df .loc[1dx_nan_age,].loc[1dx_nan_age] =
df [].loc[1dx_nan_age].map(map_means)

].astype(str).astype(int)

] = df[].apply(int)

Speaker notes

We did code review earlier together

Static Analysis, Code Linting

Automatic detection of problematic patterns based on code structure

1f (user.jobTitle =

}

function fn() {
X =1,
return Xx,;
X = 3;

Static Analysis for Data Science Code

o Lots of research

o« Style issues in Python

e Shape analysis of tensors in deep learning

« Analysis of flow of datasets to detect data leakage

Examples:

e Yang, Chenyang, et al.. "Data Leakage in Notebooks: Static Detection and Better Processes." Proc.
ASE (2022).

o Lagouvardos, S. et al. (2020). Static analysis of shape in TensorFlow programs. In Proc. ECOQOP.

o Wang, Jiawei, et al. "Better code, better sharing: on the need of analyzing jupyter notebooks." In
Proc. ICSE-NIER. 2020.

Process Integration: Static Analysis

Warnings during Code Review

package com.google.devtools.staticanalysis;

public class Test {

- Lint Missing a Javadoc comment.
Java
1:0 AM, Aug 21

Please fix Not useful

public boolean foof() {
return getString() == "foo".toString():;

- ErrorProne String comparison using reference equality instead of value equality
StringEquality (see htip://code.google.com/p/error-prone/wiki/StringEquality)
1:03 AM, Aug 21

Please fix

Suggested fix attached: show Not useful

}

public String getString() {
return new String(“foo"):

}
}

Speaker notes

Social engineering to force developers to pay attention. Also possible with integration in pull requests on GitHub.

Bonus: Data Linter at Google

Miscoding Outliers and scaling
« Number, date, time as string « Unnormalized feature (varies
« Enum as real widely)
« Tokenizable string (long strings, « Tailed distributions
all unique) « Uncommon sign

o Zip code as number .
Packaging

e Duplicate rows
o Empty/missing data

Further readings: Hynes, Nick, D. Sculley, and Michael Terry. The data linter: Lightweight,
— automated sanity checking for ML data sets. NIPS MLSys Workshop. 2017.

http://learningsys.org/nips17/assets/papers/paper_19.pdf

Summary

« Beyond model and data quality: Quality of the infrastructure
matters, danger of silent mistakes

o Automate pipelines to foster testing, evolution, and
experimentation

« Many SE techniques for test automation, testing robustness, test
adequacy, testing in production useful for infrastructure quality

Further Readings

o O'Leary, Katie, and Makoto Uchida. "Common problems with Creating Machine
Learning Pipelines from Existing Code." Proc. Third Conference on Machine
Learning and Systems (MLSys) (2020).

e Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test
Score: A Rubric for ML Production Readiness and Technical Debt Reduction.
Proceedings of IEEE Big Data (2017)

o Zinkevich, Martin. Rules of Machine Learning: Best Practices for ML
Engineering. Google Blog Post, 2017

o Serban, Alex, Koen van der Blom, Holger Hoos, and Joost Visser. "Adoption and
Effects of Software Engineering Best Practices in Machine Learning." In Proc.

ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (2020).

https://research.google/pubs/pub48984.pdf
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://arxiv.org/pdf/2007.14130

Machine Learning in Production/Al Engineering o Christian Kaestner & Claire Le Goues, Carnegie Mellon University e Spring 2024

