
Machine Learning in ProductionMachine Learning in Production

Automating and Testing MLAutomating and Testing ML
PipelinesPipelines

1


Infrastructure Quality...

2


Readings
Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael
Salib, D. Sculley.

. Proceedings of IEEE Big
Data (2017)

Recommended readings:
O'Leary, Katie, and Makoto Uchida. "

." Proc.
Conference on Machine Learning and Systems (MLSys) (2020).

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

Common problems with
Creating Machine Learning Pipelines from Existing Code

3


https://research.google.com/pubs/archive/46555.pdf
https://research.google/pubs/pub48984.pdf

Learning Goals
Decompose an ML pipeline into testable functions
Implement and automate tests for all parts of the ML pipeline
Understand testing opportunities beyond functional correctness
Describe the different testing levels and testing opportunities at
each level
Automate test execution with continuous integration

4


ML Pipelines

All steps to create (and deploy) the model

5


Common ML Pipeline

6




Computational notebook

Containing all code, often also dead experimental code

Speaker notes

Notebooks as Production Pipeline?

Parameterize and use nbconvert?
7



https://tanzu.vmware.com/content/blog/how-data-scientists-can-tame-jupyter-notebooks-for-use-in-production-systems

Real Pipelines can be Complex

8


Real Pipelines can be Complex
Large arguments of data

Distributed data storage

Distributed processing and learning

Special hardware needs

Fault tolerance

Humans in the loop

9


Possible Mistakes in ML Pipelines

Danger of "silent" mistakes in many phases

Examples?

10


Possible Mistakes in ML Pipelines
Danger of "silent" mistakes in many phases:

Dropped data after format changes
Failure to push updated model into production
Incorrect feature extraction
Use of stale dataset, wrong data source
Data source no longer available (e.g web API)
Telemetry server overloaded
Negative feedback (telemtr.) no longer sent from app
Use of old model learning code, stale hyperparameter
Data format changes between ML pipeline steps

11


Pipeline Thinking
After exploration and prototyping build robust pipeline

One-off model creation -> repeatable automateable process

Enables updates, supports experimentation

Explicit interfaces with other parts of the system (data sources,
labeling infrastructure, training infrastructure, deployment, ...)

Design for change

12


Building Robust Pipeline Automation
Support experimentation and evolution

Automate
Design for change
Design for observability
Testing the pipeline for robustness

Thinking in pipelines, not models
Integrating the Pipeline with other Components

13


Pipeline Testability and
Modularity

14


Pipelines are Code
From experimental notebook code to production code

Each stage as a function or module

Well tested in isolation and together

Robust to changes in inputs (automatically adapt or crash, no silent
mistakes)

Use good engineering practices (version control, documentation,
testing, naming, code review)

15


Sequential Data Science Code in
Notebooks

How to test??

typical data science code from a notebook
df = pd.read_csv('data.csv', parse_dates=True)

data cleaning
...

feature engineering
df['month'] = pd.to_datetime(df['datetime']).dt.month
df['dayofweek']= pd.to_datetime(df['datetime']).dt.dayofweek
df['delivery_count'] = boxcox(df['delivery_count'], 0.4)
df.drop(['datetime'], axis=1, inplace=True)

16


Testability can be decomposed into...

Controllability:
Ability to influence system
internal state or behavior by
changing its inputs

Observability
Degree to which you can
determine that the behavior
went as expected.

17


Pipeline restructed into separate function
def encode_day_of_week(df):
 if 'datetime' not in df.columns: raise ValueError("Column datetime missing")
 if df.datetime.dtype != 'object': raise ValueError("Invalid type for column datetime")
 df['dayofweek']= pd.to_datetime(df['datetime']).dt.day_name()
 df = pd.get_dummies(df, columns = ['dayofweek'])
 return df

...

def prepare_data(df):
 df = clean_data(df)

18


Orchestrating Functions

Dataflow frameworks like , , , , and
support distribution, fault tolerance, monitoring, ...

Hosted versions like and

def pipeline():
 train = pd.read_csv('train.csv', parse_dates=True)
 test = pd.read_csv('test.csv', parse_dates=True)
 X_train, y_train = prepare_data(train)
 X_test, y_test = prepare_data(test)
 model = learn(X_train, y_train)
 accuracy = eval(model, X_test, y_test)
 return model, accuracy

Luigi DVC Airflow d6tflow Ploomber

DataBricks AWS SageMaker Pipelines
19



https://github.com/spotify/luigi
https://dvc.org/
https://airflow.apache.org/
https://github.com/d6t/d6tflow
https://ploomber.io/
https://databricks.com/
https://aws.amazon.com/sagemaker/pipelines/

Test the Modules
def encode_day_of_week(df):
 if 'datetime' not in df.columns: raise ValueError("Column d
 if df.datetime.dtype != 'object': raise ValueError("Invalid
 df['dayofweek']= pd.to_datetime(df['datetime']).dt.day_name
 df = pd.get_dummies(df, columns = ['dayofweek'])
 return df

def test_day_of_week_encoding():
 df = pd.DataFrame({'datetime': ['2020-01-01','2020-01-02','2
 encoded = encode_day_of_week(df)
 assert "dayofweek_Wednesday" in encoded.columns
 assert (encoded["dayofweek_Wednesday"] == [1, 0, 1]).all()

20


Subtle Bugs in Data Wrangling Code
df['Join_year'] = df.Joined.dropna().map(
 lambda x: x.split(',')[1].split(' ')[1])

df.loc[idx_nan_age,'Age'].loc[idx_nan_age] =
 df['Title'].loc[idx_nan_age].map(map_means)

df["Weight"].astype(str).astype(int)

21




1 attempting to remove na values from column, not table, drops the whole data frame

2 loc[] called twice, resulting in assignment to temporary column only, goal was a slice of a slice

3 astype() is not an in-place operation. the intention is probably to change the type but it doesn’t do it in place

Speaker notes

Subtle Bugs in Data Wrangling Code
(continued)
df['Reviws'] = df['Reviews'].apply(int)

df["Release Clause"] =
 df["Release Clause"].replace(regex=['k'], value='000')
df["Release Clause"] =
 df["Release Clause"].astype(str).astype(float)

22




1 attempting to remove na values from column, not table

2 loc[] called twice, resulting in assignment to temporary column only

3 astype() is not an in-place operation

4 typo in column name

5&6 modeling problem (k vs K)

Speaker notes

Modularity fosters Testability
Breaking code into functions/modules

Supports reuse, separate development, and testing

Can test individual parts

23


Testing Maturity

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction

24


https://research.google.com/pubs/archive/46555.pdf

Source: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric
for ML Production Readiness and Technical Debt Reduction

25


https://research.google.com/pubs/archive/46555.pdf

Data Tests
1. Feature expectations are captured in a schema.
2. All features are beneficial.
3. No feature’s cost is too much.
4. Features adhere to meta-level requirements.
5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.
7. All input feature code is tested.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction

26


https://research.google.com/pubs/archive/46555.pdf

Tests for Model Development
1. Model specs are reviewed and submitted.
2. Offline and online metrics correlate.
3. All hyperparameters have been tuned.
4. The impact of model staleness is known.
5. A simpler model is not better.
6. Model quality is sufficient on important data slices.
7. The model is tested for considerations of inclusion.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction

27


https://research.google.com/pubs/archive/46555.pdf

ML Infrastructure Tests
1. Training is reproducible.
2. Model specs are unit tested.
3. The ML pipeline is Integration tested.
4. Model quality is validated before serving.
5. The model is debuggable.
6. Models are canaried before serving.
7. Serving models can be rolled back.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction

28


https://research.google.com/pubs/archive/46555.pdf

Monitoring Tests
1. Dependency changes result in notification.
2. Data invariants hold for inputs.
3. Training and serving are not skewed.
4. Models are not too stale.
5. Models are numerically stable.
6. Computing performance has not regressed.
7. Prediction quality has not regressed.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction

29


https://research.google.com/pubs/archive/46555.pdf

Case Study: Covid-19 Detection
SpiroCallSpiroCall

(from S20 midterm; assume cloud or hybrid deployment)
30



https://www.youtube.com/watch?v=e62ZL3dCQWM

Breakout Groups
In the Smartphone Covid Detection scenario
Discuss in groups:

Back left: data tests
Back right: model dev. tests
Front right: infrastructure tests
Front left: monitoring tests

For 8 min, discuss some of the listed point in the context of the
Covid-detection scenario: what would you do?
In #lecture, tagging group members, suggest what top 2 tests to
implement and how

31


Excursion: Test Automation

32


From Manual Testing to Continuous
Integration

33


Anatomy of a Unit Test
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
 @Test
 public void testSanityTest(){
 // set up
 Graph g1 = new AdjacencyListGraph(10);
 Vertex s1 = new Vertex("A");
 Vertex s2 = new Vertex("B");
 // check expected results (oracle)

34


Ingredients to a Test
Specification

Controlled environment

Test inputs (calls and parameters)

Expected outputs/behavior (oracle)

35


Unit Testing Pitfalls
Working code, failing tests

"Works on my machine"

Tests break frequently

How to avoid?

36


Testability can be decomposed into...

Controllability:
Ability to influence system
internal state or behavior by
changing its inputs

Observability
Degree to which you can
determine that the behavior
went as expected.

37


Testable Code
Think about testing when writing code

Unit testing encourages you to write testable code

Separate parts of the code to make them independently testable

Abstract functionality behind interface, make it replaceable

Bonus: Test-Driven Development is a design and development
method in which you always write tests before writing code

38


Build systems & Continuous Integration
Automate all build, analysis, test, and deployment steps from a
command line call

Ensure all dependencies and configurations are defined

Ideally reproducible and incremental

Distribute work for large jobs

Track results

Key CI benefit: Tests are regularly executed, part of process

39


40


Tracking Build Quality
Track quality indicators over time, e.g.,

Build time
Coverage
Static analysis warnings
Performance results
Model quality measures
Number of TODOs in source code

41


Coverage

42


Tracking Model Qualities
Many tools: MLFlow, ModelDB, Neptune, TensorBoard, Weights &
Biases, Comet.ml, ...

43


ModelDB Example
from verta import Client
client = Client("http://localhost:3000")

proj = client.set_project("My first ModelDB project")
expt = client.set_experiment("Default Experiment")

log a training run
run = client.set_experiment_run("First Run")
run.log_hyperparameters({"regularization" : 0.5})
model1 = # ... model training code goes here
run.log metric('accuracy', accuracy(model1, validationData))

44




ModelDB is an open-source system to version machine learning models including their ingredients code, data, config, and environment and to track ML metadata across
the model lifecycle.

Use ModelDB to:

Make your ML models reproducible Manage your ML experiments, build performance dashboards, and share reports Track models across their lifecycle including
development, deployment, and live monitoring

Speaker notes

Minimizing and Stubbing
Dependencies

45


How to unit test component with
dependency on other code?

46


How to Test Parts of a System?

original implementation hardcodes external API
def clean_gender(df):
 def clean(row):
 if pd.isnull(row['gender']):
 row['gender'] = gender_api_client.predict(row['firstname
 return row
 return df.apply(clean, axis=1)

47


Automating Test Execution

def test_do_not_overwrite_gender():
 df = pd.DataFrame({'firstname': ['John', 'Jane', 'Jim'],
 'lastname': ['Doe', 'Doe', 'Doe'],
 'location': ['Pittsburgh, PA', 'Rome, It
 'gender': [np.nan, 'F', np.nan]})
 out = clean_gender(df, model_stub)
 assert(out['gender'] ==['M', 'F', 'M']).all()

48


Decoupling from Dependencies

Replace concrete API with an interface that caller can parameterize

def clean_gender(df, model):
 def clean(row):
 if pd.isnull(row['gender']):
 row['gender'] = model(row['firstname'],
 row['lastname'],
 row['location'])
 return row
 return df.apply(clean, axis=1)

49


Stubbing the Dependency

def test_do_not_overwrite_gender():
 def model_stub(first, last, location):
 return 'M'

 df = pd.DataFrame({'firstname': ['John', 'Jane', 'Jim'], 'la
 out = clean_gender(df, model_stub)
 assert(out['gender'] ==['M', 'F', 'M']).all()

50


General Testing Strategy: Decoupling Code
Under Test

(Mocking frameworks provide infrastructure for expressing such tests
compactly.)

51


Testing Error Handling /
Infrastructure Robustness

52


General Error Handling Strategies
Avoid silent errors

Recover locally if possible, propagate error if necessary -- fail entire
task if needed

Explicitly handle exceptional conditions and mistakes

Test correct error handling

If logging only, is anybody analyzing log files?

53


Test for Expected Exceptions
def test_invalid_day_of_week_data():
 df = pd.DataFrame({'datetime_us': ['01/01/2020'],
 'delivery_count': [1]})
 with pytest.raises(ValueError):
 encode_day_of_week(df)

54


Test for Expected Exceptions
def test_learning_fails_with_missing_data():
 df = pd.DataFrame({})
 with pytest.raises(NoDataError):
 learn(df)

55


Test Recovery Mechanisms with Stub
Use stubs to inject artificial faults

testing retry mechanism
from retry.api import retry_call
import pytest

stub of a network connection, sometimes failing
class FailedConnection(Connection):
 remaining_failures = 0
 def __init__(self, failures):
 self.remaining_failures = failures
 def get(self, url):
 print(self.remaining failures)

56


Test Error Handling throughout Pipeline
Is invalid data rejected / repaired?

Are missing data updates raising errors?

Are unavailable APIs triggering errors?

Are failing deployments reported?

57


Log Error Occurrence
Even when reported or mitigated, log the issue

Allows later analysis of frequency and patterns

Monitoring systems can raise alarms for anomalies

58


Example: Error Logging
from prometheus_client import Counter
connection_timeout_counter = Counter(
 'connection_retry_total',
 'Retry attempts on failed connections')

class RetryLogger():
 def warning(self, fmt, error, delay):
 connection_timeout_counter.inc()

retry_logger = RetryLogger()

59


Test Monitoring
Inject/simulate faulty behavior
Mock out notification service used by monitoring
Assert notification

class MyNotificationService extends NotificationService {
 public boolean receivedNotification = false;
 public void sendNotification(String msg) {
 receivedNotification = true; }
}
@Test void test() {
 Server s = getServer();
 MyNotificationService n = new MyNotificationService();
 Monitor m = new Monitor(s, n);
 s.stop();
 s.request(); s.request(); 60



Test Monitoring in Production
Like fire drills (manual tests may be okay!)

Manual tests in production, repeat regularly

Actually take down service or trigger wrong signal to monitor

61


Chaos Testing

http://principlesofchaos.org
62



http://principlesofchaos.org/



Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in
production. Pioneered at Netflix

Speaker notes

Chaos Testing Argument
Distributed systems are simply too complex to comprehensively
predict

experiment to learn how it behaves in the presence of faults
Base corrective actions on experimental results because they
reflect real risks and actual events

Experimentation != testing -- Observe behavior rather then expect
specific results
Simulate real-world problem in production (e.g., take down server,
inject latency)
Minimize blast radius: Contain experiment scope

63


Netflix's Simian Army
Chaos Monkey: randomly disable production instances
Latency Monkey: induces artificial delays in our RESTful client-server
communication layer
Conformity Monkey: finds instances that don’t adhere to best-practices and
shuts them down
Doctor Monkey: monitors external signs of health to detect unhealthy instances
Janitor Monkey: ensures cloud environment is running free of clutter and waste
Security Monkey: finds security violations or vulnerabilities, and terminates the
offending instances
10–18 Monkey: detects problems in instances serving customers in multiple
geographic regions
Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an entire
Amazon availability zone.

64


Chaos Toolkit
Infrastructure for chaos experiments
Driver for various infrastructure and failure cases
Domain specific language for experiment definitions

{
 "version": "1.0.0",
 "title": "What is the impact of an expired certificate on
 "description": "If a certificate expires, we should gracef
 "tags": ["tls"],
 "steady-state-hypothesis": {
 "title": "Application responds",
 "probes": [
 {
 "type": "probe",
 "name": "the-astre-service-must-be-running", 65



Chaos Experiments for ML Infrastructure?

66




Fault injection in production for testing in production. Requires monitoring and explicit experiments.

Speaker notes

Where to Focus Testing?

67


Testing in ML Pipelines
Usually assume ML libraries already tested (pandas, sklearn, etc)

Focus on custom code
data quality checks
data wrangling (feature engineering)
training setup
interaction with other components

Consider tests of latency, throughput, memory, ...

68


Testing Data Quality Checks
Test correct detection of problems

Test correct error handling or repair of detected problems

def test_invalid_day_of_week_data():
 ...

def test_fill_missing_gender():
 ...
def test_exception_for_missing_data():
 ...

69


Test Data Wrangling Code
num = data.Size.replace(r'[kM]+$', '', regex=True).
 astype(float)
factor = data.Size.str.extract(r'[\d\.]+([KM]+)',
 expand =False)
factor = factor.replace(['k','M'], [10**3, 10**6]).fillna(1)
data['Size'] = num*factor.astype(int)

data["Size"]= data["Size"].
 replace(regex =['k'], value='000')
data["Size"]= data["Size"].
 replace(regex =['M'], value='000000')
data["Size"]= data["Size"].astype(str). astype(float)

70




both attempts are broken:

Variant A, returns 10 for “10k”
Variant B, returns 100.5000000 for “100.5M”

Speaker notes

Test Model Training Setup?
Execute training with small sample data

Ensure shape of model and data as expected (e.g., tensor dimensions)

71


Test Interactions with Other Components
Test error handling for detecting connection/data problems

loading training data
feature server
uploading serialized model
A/B testing infrastructure

72


Integration and system
tests

73




Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one programmer and is stored in a single file. Different
programming languages have different units: In C++ and Java the unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit
may be the entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for units to function perfectly in isolation but to fail
when integrated. For example because they share an area of the computer memory or because the order of invocation of the different methods is not the one anticipated by
the different programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.) that make up the product delivered to the customer.
System testing focuses on defects that arise at this highest level of integration. Typically system testing includes many types of testing: functionality, usability, security,
internationalization and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the customer accepting the software and giving us their
money. From the customer's point of view, they would generally like the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the
vendor's point of view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical strategic questions that should be
addressed before acceptance testing are: Who defines the level of the acceptance testing? Who creates the test scripts? Who executes the tests? What is the pass/fail
criteria for the acceptance test? When and how do we get paid?

Speaker notes

Integration and system tests
Test larger units of behavior

Often based on use cases or user stories -- customer perspective

@Test void gameTest() {
 Poker game = new Poker();
 Player p = new Player();
 Player q = new Player();
 game.shuffle(seed)
 game.add(p);
 game.add(q);
 game.deal();
 p.bet(100);
 q.bet(100);
 p.call(); 74



Integration tests
Test combined behavior of multiple functions

def test_cleaning_with_feature_eng() {
 d = load_test_data();
 cd = clean(d);
 f = feature3.encode(cd);
 assert(no_missing_values(f["m"]));
 assert(max(f["m"]) <= 1.0);
}

75


Test Integration of Components
// making predictions with an ensemble of models
function predict_price(data, models, timeoutms) {
 // send asynchronous REST requests all models
 const requests = models.map(model => rpc(model, data, {time
 // collect all answers and return average if at least two m
 return Promise.all(requests).then(predictions => {
 const success = predictions.filter(v => v >= 0)
 if (success.length < 2) throw new Error("Too many model
 return success.reduce((a, b) => a + b, 0) / success.len
 })
}

76


End-To-End Test of Entire Pipeline
def test_pipeline():
 train = pd.read_csv('pipelinetest_training.csv', parse_dates
 test = pd.read_csv('pipelinetest_test.csv', parse_dates=True
 X_train, y_train = prepare_data(train)
 X_test, y_test = prepare_data(test)
 model = learn(X_train, y_train)
 accuracy = eval(model, X_test, y_test)
 assert accuracy > 0.9

77


System Testing from a User Perspective
Test the product as a whole, not just components

Click through user interface, achieve task (often manually performed)

Derived from requirements (use cases, user stories)

Testing in production

78


The V-Model of Testing

79


Code Review and Static
Analysis

80


Code Review
Manual inspection of code

Looking for problems and possible improvements
Possibly following checklists
Individually or as group

Modern code review: Incremental review at checking
Review individual changes before merging
Pull requests on GitHub
Not very effective at finding bugs, but many other benefits:
knowledge transfer, code imporvement, shared code ownership,
improving testing

81


82


Subtle Bugs in Data Wrangling Code
df['Join_year'] = df.Joined.dropna().map(
 lambda x: x.split(',')[1].split(' ')[1])

df.loc[idx_nan_age,'Age'].loc[idx_nan_age] =
 df['Title'].loc[idx_nan_age].map(map_means)

df["Weight"].astype(str).astype(int)

df['Reviws'] = df['Reviews'].apply(int)

83




We did code review earlier together

Speaker notes

Static Analysis, Code Linting
Automatic detection of problematic patterns based on code structure

if (user.jobTitle = "manager") {
 ...
}

function fn() {
 x = 1;
 return x;
 x = 3;
}

84


Static Analysis for Data Science Code
Lots of research
Style issues in Python
Shape analysis of tensors in deep learning
Analysis of flow of datasets to detect data leakage
...

Examples:
Yang, Chenyang, et al.. "Data Leakage in Notebooks: Static Detection and Better Processes." Proc.
ASE (2022).
Lagouvardos, S. et al. (2020). Static analysis of shape in TensorFlow programs. In Proc. ECOOP.
Wang, Jiawei, et al. "Better code, better sharing: on the need of analyzing jupyter notebooks." In
Proc. ICSE-NIER. 2020.

85


Process Integration: Static Analysis
Warnings during Code Review

86




Social engineering to force developers to pay attention. Also possible with integration in pull requests on GitHub.

Speaker notes

Bonus: Data Linter at Google

Miscoding
Number, date, time as string
Enum as real
Tokenizable string (long strings,
all unique)
Zip code as number

Outliers and scaling
Unnormalized feature (varies
widely)
Tailed distributions
Uncommon sign

Packaging
Duplicate rows
Empty/missing data

Further readings: Hynes, Nick, D. Sculley, and Michael Terry.
. NIPS MLSys Workshop. 2017.

The data linter: Lightweight,
automated sanity checking for ML data sets

87


http://learningsys.org/nips17/assets/papers/paper_19.pdf

Summary
Beyond model and data quality: Quality of the infrastructure
matters, danger of silent mistakes
Automate pipelines to foster testing, evolution, and
experimentation
Many SE techniques for test automation, testing robustness, test
adequacy, testing in production useful for infrastructure quality

88


Further Readings
O'Leary, Katie, and Makoto Uchida. "

." Proc. Third Conference on Machine
Learning and Systems (MLSys) (2020).
Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test
Score: A Rubric for ML Production Readiness and Technical Debt Reduction.
Proceedings of IEEE Big Data (2017)
Zinkevich, Martin.

. Google Blog Post, 2017
Serban, Alex, Koen van der Blom, Holger Hoos, and Joost Visser. "

." In Proc.
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (2020).

Common problems with Creating Machine
Learning Pipelines from Existing Code

Rules of Machine Learning: Best Practices for ML
Engineering

Adoption and
Effects of Software Engineering Best Practices in Machine Learning

89


https://research.google/pubs/pub48984.pdf
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://arxiv.org/pdf/2007.14130

Machine Learning in Production/AI Engineering • Christian Kaestner & Claire Le Goues, Carnegie Mellon University • Spring 2024



