" EZI: =
[p=g | LN
1ing-infProductic
T i

w

n .

,?f//i

ocessing

—

-

— ot

Design and operations

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance,
versioning,
reproducibility

Safety

Security and
privacy

Fairness Interpretability

and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture

Readings

Required reading: Nathan Marz. Big Data: Principles and best
practices of scalable realtime data systems. Simon and Schuster,

2015. Chapter 1: A new paradigm for Big Data

Suggested watching: Molham Aref. Business Systems with Machine
Learning. Guest lecture, 2020.

Suggested reading: Martin Kleppmann. Designing Data-Intensive
Applications. OReilly. 2017.

https://www.youtube.com/watch?v=_bvrzYOA8dY
https://dataintensive.net/

Learning Goals

« Organize different data management solutions and their tradeoffs

o Understand the scalability challenges involved in large-scale
machine learning and specifically deep learning

o Explain the tradeoffs between batch processing and stream
processing and the lambda architecture

« Recommend and justify a design and corresponding technologies
for a given system

Case Study

2% juggling cmu - Google Ph: x

<+

& > (C @& https://photos.google.com/s... [> ¢

“ Q, juggling cmu

Thu, Sep 21, 2017

Sun, Aug 20, 2017

Masters of
Flving Objects

Speaker notes

« Discuss possible architecture and when to predict (and update)
e in may 2017: 500M users, uploading 1.2billion photos per day (14k/sec)
e inJun 2019 1 billion users

Adding capacity

Stories of catastrophic success?

Data Management and
Processing in ML-Enabled
Systems

Kinds of Data

« Training data
 Input data

o Telemetry data
« (Models)

all potentially with huge total volumes and high throughput

need strategies for storage and processing

Data Management and Processing in ML-
Enabled Systems

Store, clean, and update training data

Learning process reads training data, writes model
Prediction task (inference) on demand or precomputed
Individual requests (low/high volume) or large datasets?

Often both learning and inference data heavy, high volume tasks

Scaling Computations

Efficent Algorithms Faster Machines

More Machines

Distributed Everything

Distributed data cleaning
Distributed feature extraction
Distributed learning

Distributed large prediction tasks
Incremental predictions

Distributed logging and telemetry

Reliability and Scalability Challenges in Al-
Enabled Systems?

Distributed Systems and Al-Enabled
Systems

o Learning tasks can take substantial resources

o Datasets too large to fit on single machine

« Nontrivial inference time, many many users

o Large amounts of telemetry

o Experimentation at scale

« Models in safety critical parts

e Mobile computing, edge computing, cyber-physical systems

Reminder: T-Shaped People

|

"[-shaped” Generalist “T-shaped”
Expert at one thing Capable in a lot of things Capable in a lot of things
but not expert in any and expert in one of them

Go deeper with: Martin Kleppmann. Designing Data-Intensive
Applications. OReilly. 2017.

https://dataintensive.net/

Excursion: Distributed
Deep Learning with the
Parameter Server
Architecture

Recall: Backpropagation

Training at Scale is Challenging

Already 2012 at Google: 1TB-1PB of training data, 10° — 10%°
parameters

Need distributed training; learning is often a sequential problem

Just exchanging model parameters requires substantial network
bandwidth

Fault tolerance essential (like batch processing), add/remove nodes

Tradeoff between convergence rate and system efficiency

Distributed Gradient Descent

-
servers /

gy *t-+9m

i
3. update

training
data

2. pushs

4. pull

X

(worker 1)
XX X X X
A
1. compute
XX X X x |Wy
4
X X X
XX X
X X
L~
[]
2. push e
\ []
(\ worker m)
XX XXX X |9y
1. compute
|
XX X X X X Wm
X X
XX X X

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Parameter Server Architecture

server

resource manager

server group

a server
node

manag

)

E:J) worker grou/ é
S\

task
scheduler _O

A
Z

a worker - y \ \. J
node \
training data

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Speaker notes

Multiple parameter servers that each only contain a subset of the parameters, and multiple workers that each require only a subset of each

Ship only relevant subsets of mathematical vectors and matrices, batch communication

Resolve conflicts when multiple updates need to be integrated (sequential, eventually, bounded delay)

Run more than one learning algorithm simulaneously

SysML Conference

Increasing interest in the systems aspects of machine learning
e.g., building large scale and robust learning infrastructure

https:/mlsys.org/

https://mlsys.org/

Data Storage Basics

Relational vs document storage
1:n and n:m relations
Storage and retrieval, indexes

Query languages and optimization

Relational Data Models

Photos:
photo _id user_id path upload_date size camera_id camera_setting
133422131 54351 /st/u211/1U6uFl47Fy.jpg 2021-12-03T09:18:32.124Z 5.7 663 f/1.8; 1/120; 4.44mm:; I1ISO271
133422132 13221 /st/ullb/MFxIL1FY8V.jpg 2021-12-03T09:18:32.129Z 3.1 1844 f/2,1/15, 3.64mm, ISO1250
133422133 54351 /st/x81/1TzhcSmv9s.jpg 2021-12-03T09:18:32.131Z 4.8 663 f/1.8; 1/120; 4.44mm:; I1SO48
Users: Cameras:
user_id account_name photos_total last_login camera_id manufacturer print_name
54351 ckaestne 5124 2021-12- 663 Google Google Pixel 5
08T112:27:48.4977Z 1844 Motorola Motorola MotoG3
13221 eva.burk 3 2021-12-

21T01:51:54.713Z

select p.photo_id, p.path, u.photos_total
from photos p, users u

where u.user_id=p.user_id and u.account_name = '"ckaestne"

Document Data Models

: 133422131,

db.getCollection(). find({ :

B

Log files, unstructured data

0.
0.
0.
0.
0.
0.
0.
0.

cRoNoNoNoNoNoNo)
RRrR R RPRPRRRR

/1mgl3.jpg 200
/1mg27.jpg 200
/main.css 200
/1mgl3.jpg 200
/1mg34.jpg 200
/1mg27.jpg 200
/1mgl3.jpg 200
/1mgl3.jpg 200

radeoffs

Data Encoding

Plain text (csv, logs)

Semi-structured, schema-free (JSON, XML)
Schema-based encoding (relational, Avro, ...)

Compact encodings (protobuffer, ...)

Distributed Data Storage

Replication vs Partitioning

Partitioning

Divide data:

o Horizontal partitioning:
Different rows in different
tables; e.g., movies by decade,
hashing often used

o Vertical partitioning: Different
columns in different tables;
e.g., movie title vs. all actors

Tradeoffs?

=

Client

Database Library

Database Library

Database US West Database US East

Database Europe

Replication with Leaders and Followers

Client Client
Database Library Database Library
read ;o . . read
y Primary Database "

-
. .
N |]

sync
Database Replica 1 Database Replica 2

Replication Strategies: Leaders and
Followers

Write to leader, propagated synchronously or async.

Read from any follower

Elect new leader on leader outage; catchup on follower outage
Built in model of many databases (MySQL, MongoDB, ...)

Benefits and Drawbacks?

Recall: Google File System

Application (file name, chunk index) | GIS master .~ [foo/bar
| chunk 2ef0

GFS client | File namespace r,f

(chunk handle.
chunk locations)

i
i
i

Legend:
ﬂ Data messages

Control messages

Instructions to chunkserver
Chunkserver state

(chunk handle, byte range) | ¥ L

GFS chunkserver GFS chunkserver

Linux file system Linux file system
=g~ Bl

Figure 1: GFS Architecture

chunk data

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM SIGOPS

= operating systems review. Vol. 37. No. 5. ACM, 2003.

https://ai.google/research/pubs/pub51.pdf

Multi-Leader Replication

Scale write access, add redundancy

Requires coordination among leaders
o Resolution of write conflicts

Offline leaders (e.g. apps), collaborative editing

Leaderless Replication

Client writes to multiple replica, propagate from there

Read from multiple replica (quorum required)
o Repair on reads, background repair process

Versioning of entries (clock problem)

e.g. Amazon Dynamo, Cassandra, Voldemort

Transactions

Multiple operations conducted as one, all or nothing

Avoids problems such as

o dirty reads
o dirty writes

Various strategies, including locking and optimistict+rollback

Overhead in distributed setting

Data Processing (Overview)

 Services (online)
» Responding to client requests as they come in
» Evaluate: Response time
« Batch processing (offline)
= Computations run on large amounts of data
= Takes minutes to days; typically scheduled periodically
» Evaluate: Throughput
« Stream processing (near real time)
» Processes input events, not responding to requests
= Shortly after events are issued

Microservices

Microservices

Mobile App
(Client)

Content Deliv. Cache
}< Engine =5

Content Deliv.

Service 8

Audio Assets Download
Assets 8 Metadata 8 Service 8
Ownership Activation Stats

B B B

Service [C) Datastorage - Calls

LLUsers L

Figure based on Christopher Meiklejohn. Dynamic Reduction: Optimizing Service-level Fault
— Injection Testing With Service Encapsulation. Blog Post 2021

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

Microservices

Independent, cohesive services

o Each specialized for one task
o Each with own data storage
e Each independently scalable through multiple instances + load balancer

Remote procedure calls

Different teams can work on different services independently (even in different
languages)

But: Substantial complexity from distributed system nature: various network
failures, latency from remote calls, ...

— Avoid microservice complexity unless really needed for scalability

APl Gateway Pattern

Central entry point, authentication, routing, updates, ...

|dentity
provider Service 1 a“
Client 1 JSON/ I
SSL
ProtoBuf)
API Gateway Service 2 BJ

Client 2

Service 3

B

Caching Logging

Batch Processing

Large Jobs

« Analyzing TB of data, typically distributed storage
o Filtering, sorting, aggregating
o Producing reports, models, ...

cat /var/log/nginx/access.log |
awk |

sort |

uniq -c |
sort -r -n |
head -n 5

Shuffle

Partitioned Map
data storage
—
Ne—
> map P
N
—
;Ne—
> map P
N
—
Ne—
> map P
N
—
MN—
> map [P
N
02:49:12 127.0.0.1 GET /imgl3.jpg 200
©2:49:35 127.0.0.1 GET /img27.jpg 200
03:52:36 127.0.0.1 GET /main.css 200
04:17:03 127.0.0.1 GET /imgl3.jpg 200
05:04:54 127.0.0.1 GET /img34.jpg 200
05:38:07 127.0.0.1 GET /img27.jpg 200
©5:44:24 127.0.0.1 GET /imgl3.jpg 200
06:08:19 127.0.0.1 GET /imgl3.jpg 200

/imgl3,
/img27,

/imgl3,

/img34,
/img27,

/imgl3,
/imgl3,

Reduce
reduce
reduce
1 /imgl3,
1 /imgl3,
/imgl3,
1 /imgl3,
1 /img27,
1 /img34,
/img27,
1
1

R R PR R

(IR

Result

/imgl3, 4

/img27, 2
/img34, 1

file:///home/runner/work/s2024/s2024/lectures/_static/13_dataatscale/mapreduce.svg

Distributed Batch Processing

Process data locally at storage
Aggregate results as needed
Separate pluming from job logic

MapReduce as common framework

MapReduce -- Functional Programming
Style

Similar to shell commands: Immutable inputs, new outputs, avoid side
effects

Jobs can be repeated (e.g., on crashes)
Easy rollback

Multiple jobs in parallel (e.g., experimentation)

Machine Learning and MapReduce

Speaker notes

Useful for big learning jobs, but also for feature extraction

Dataflow Engines (Spark, Tez, Flink, ...)

Single job, rather than subjobs
More flexible than just map and reduce

Multiple stages with explicit dataflow between them

Often in-memory data

Pluming and distribution logic separated

Key Design Principle: Data Locality

Moving Computation is Cheaper than Moving Data -- Hadoop
Documentation

Data often large and distributed, code small

Avoid transfering large amounts of data

Perform computation where data is stored (distributed)
Transfer only results as needed

"The map reduce way"

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#aMoving_Computation_is_Cheaper_than_Moving_Data

Stream Processing

Event-based systems, message passing style, publish subscribe

Stream Processing (e.g., Kafka)

Photo
Uploader

\Message Broker

Topic: new_photos

Notifica-
tion
service

Topic: friends_detected

Object
statistics

Topic: detected objects

Component

—» Producer

Topic

-» Consumer

Friend

detection

(model
inference)

Object

detection
(model
inference)

¥ DB writer

Messaging Systems

Multiple producers send messages to topic

Multiple consumers can read messages

-> Decoupling of producers and consumers

Message buffering if producers faster than consumers
Typically some persistency to recover from failures

Messages removed after consumption or after timeout

Various error handling strategies (acknowledgements, redelivery, ..

)

Common Designs

Like shell programs: Read from stream, produce output in other

stream. -> loose coupling

Object
- statistics
Object detected
> .
detector objects Database
Photo > new photos writer
Uploader —— E—
rien etected .
detector > friends Notlflcatlon
service
: Friend confirmed _ Friend model
ServerLogs > view_logs > Confirmation > friends monitoring
Friend model
Process Topic training

Stream Queries

Processing one event at a time independently
vs incremental analysis over all messages up to that point
vs floating window analysis across recent messages

Works well with probabilistic analyses

Consumers

Multiple consumers share topic for scaling and load balancing
Multiple consumers read same message for different work

Partitioning possible

Design Questions
Message loss important? (at-least-once processing)

Can messages be processed repeatedly (at-most-once processing)

Is the message order important?

Are messages still needed after they are consumed?

Stream Processing and Al-enabled
Systems?

Speaker notes

Process data as it arrives, prepare data for learning tasks, use models to annotate data, analytics

Event Sourcing

o Append only databases
« Record edit events, never mutate data

« Compute current state from all past events, can reconstruct old
state

o For efficiency, take state snapshots
o Similar to traditional database logs, but persistent

addPhoto(1d=133422131, user=54351, path="/st/u211/1U6uUFl1l47Fy.]
updatePhotoData(1d=133422131, user=54351, title="Sunset")

replacePhoto(1d=133422131, user=54351, path="/st/x594/vipxBMF
deletePhoto(1d=133422131, user=54351)

Benefits of Immutability (Event Sourcing)

o All history is stored, recoverable

o Versioning easy by storing id of latest record
o Can compute multiple views

o« Compare git

On a shopping website, a customer may add an item to their cart and then remove it
again. Although the second event cancels out the first event [...], it may be useful to
know for analytics purposes that the customer was considering a particular item but
then decided against it. Perhaps they will choose to buy it in the future, or perhaps
they found a substitute. This information is recorded in an event log, but would be lost
in a database |[...].

Drawbacks of Immutable Data

Speaker notes

« Storage overhead, extra complexity of deriving state
« Frequent changes may create massive data overhead
o Some sensitive data may need to be deleted (e.g., privacy, security)

The Lambda Architecture

3 Layer Storage Architecture

« Batch layer: best accuracy, all data, recompute periodically

e Speed layer: stream processing, incremental updates, possibly
approximated

e Serving layer: provide results of batch and speed layers to clients

Assumes append-only data
Supports tasks with widely varying latency

Balance latency, throughput and fault tolerance

Lambda Architecture and Machine
Learning

\zquests

@)
g . Service uses Results /
$ % (query / model inference) Model
live :
logs incremental
N Tupdates
o Event streams Stream
3% | [|pocesng
(7 I
archives daily full
update
o Batch
% o Database (Data lake) processing
m ©

Data Lake

Trend to store all events in raw form (no consistent schema)
May be useful later

Data storage is comparably cheap

Data Lake

Trend to store all events in raw form (no consistent schema)
May be useful later
Data storage is comparably cheap

Bet: Yet unknown future value of data is greater than storage costs

Reasoning about Dataflows

Many data sources, many outputs, many copies

Which data is derived from what other data and how?

Is it reproducible? Are old versions archived?

How do you get the right data to the right place in the right format?

Plan and document data flows

Object

. statistics
Obiject detected
detector objects Database
Photo > new_photos writer
Uploader ;
Friend detected Notifical
detector friends otrication
service
Server Loas k| view loas Friend confirmed __ Friend model
9 o9 Confirmation friends monitoring

Process

Topic

Friend model
training

SE4AI: Invited Talk Molham Aref "Business Systems with Machine Learning"

Enterprise Tech Stack — Now isn’t much different

o M[?a.t a Optimization
| - ining Modeiing | i)
Formulas: A3 = B2 - D17 & Stats
2 model Spark, OPL
Python Y AMPL v
Planni
Al u € Sy TF, |_—_|m:‘;e' cams [mode]
) PyTorch, Above,
(futu re) OR- Server y orc Ao :
Anaplan Spark, ... l Optimization
Solver
Gurobi,
CPLEX
Bl App ‘homegrown’
~
Bl Browsen& > Server
(paSt) Tableau, akp
Looker o ’

Spark, ...
A N Queries & Views — SQL '
OLTP Browser PP e with DDL, DML, etc.
Server
Stored P d — not
(nOW) : Java, Python, Ruby, Oraci ored Procedures — no
JavaScript + React, . .
.’ Angular, Vue, ... Microsoft SQL
S MySQL
. . . PostgreSQL
MQ/Streaming Platform —
Kafka

> Ml o) 24712/47:52

https://youtu.be/_bvrzYOA8dY?t=1452

Breakout: Scaling Albumly

As a group, discuss and post in #lecture, tagging group members:

« How to distribute storage:
« How to design scalable search index (object detect):
« How to design scalable analytics (view count):

Excursion: ETL Tools

Extract, tranform, load

The data engineer's toolbox

Data Warehousing (OLAP)

Large denormalized databases with materialized views for large scale
reporting queries
o e.g. sales database, queries for sales trends by region

Read-only except for batch updates: Data from OLTP systems loaded
periodically, e.g. over night

Speaker notes

Image source: https://commons.wikimedia.org/wiki/File:Data_Warehouse Feeding Data_Mart.jpg

https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_Mart.jpg

ETL: Extract, Transform, Load

o Transfer data between data sources, often OLTP -> OLAP system
« Many tools and pipelines
= Extract data from multiple sources (logs, JSON, databases),
snapshotting
= Transform: cleaning, (de)normalization, transcoding, sorting,
joining
» Loading in batches into database, staging
o Automation, parallelization, reporting, data quality checking,
monitoring, profiling, recovery
« Many commercial tools

@ Xplenty

The leading data integration
bring all your data sources

nlatform to

Create simple, visualized data pipelines to your data wareho

GET STARTED

ogether.

use or data lake.

https://www.xplenty.com/

SE4AI: Invited Talk Molham Aref "Business Systems with Machine Learning"

Enterprise Tech Stack — Now isn’t much different

o M[?a.t a Optimization
| - ining Modeiing | i)
Formulas: A3 = B2 - D17 & Stats
2 model Spark, OPL
Python Y AMPL v
Planni
Al u € Sy TF, |_—_|m:‘;e' cams [mode]
) PyTorch, Above,
(futu re) OR- Server y orc Ao :
Anaplan Spark, ... l Optimization
Solver
Gurobi,
CPLEX
Bl App ‘homegrown’
~
Bl Browsen& > Server
(paSt) Tableau, akp
Looker o ’

Spark, ...
A N Queries & Views — SQL '
OLTP Browser PP e with DDL, DML, etc.
Server
Stored P d — not
(nOW) : Java, Python, Ruby, Oraci ored Procedures — no
JavaScript + React, . .
.’ Angular, Vue, ... Microsoft SQL
S MySQL
. . . PostgreSQL
MQ/Streaming Platform —
Kafka

> Ml o) 24712/47:52

https://youtu.be/_bvrzYOA8dY?t=1452

Complexity of Distributed
Systems

4 problem has been detected and windows has been shut down TO prévent damage
TO your CONpPUTEr.

CRIVER_IRQL_MNOT_LESS_OR_EQUAL

If this is the first time you've seen this Stop error screen,
restart your <omputéer, If this screen appears again, follow
These sTeps:

Check To make sure any néw hardware or software is prap5|1; installed.
If this s 2 new installacion, ask your hardware or software manufacturer
for amy windows updates you might need.

If proble=ms continue, disable or réemove any newly installed hardwire
or software. Disable BIOS memory options such as <aching or shadowing.
If you need to use Safe Mode to remove or ﬁlfab1n-urrp#ﬁrﬂtf restart

your computer, press F8 to select Advanced Startup Options, and then
select Safe Mode

Technical information:

it (Ox0000000C, 00000002,

3.5y5 - Address FSGOBSAED base at FBGB5000, DatesStamp 3ddd9leb

Beqinning dump of
Fhysical mamory d
CORTAaCT ", oL
assistance.

Common Distributed System Issues

o Systems may crash

o Messages take time

o Messages may get lost

o Messages may arrive out of order

o Messages may arrive multiple times

o Messages may get manipulated along the way
o Bandwidth limits

« Coordination overhead

o Network partition

Types of failure behaviors

o Fail-stop
o Other halting failures
« Communication failures
» Send/receive omissions
= Network partitions
= Message corruption
e Data corruption
o Performance failures
= High packet loss rate
» Low throughput, High latency
« Byzantine failures

Common Assumptions about Failures

« Behavior of others is fail-stop

o Network is reliable

o Network is semi-reliable but asynchronous

o Network is lossy but messages are not corrupt
o Network failures are transitive

 Failures are independent

e Local data is not corrupt

o Failures are reliably detectable

o Failures are unreliably detectable

Strategies to Handle Failures

o Timeouts, retry, backup services

« Detect crashed machines (ping/echo, heartbeat)
« Redundant + first/voting

e Transactions

e Do lost messages matter?
o Effect of resending message?

Test Error Handling

o Recall: Testing with stubs
o Recall: Chaos experiments

Performance Planning and
Analysis

Performance Planning and Analysis

|deally architectural planning upfront

 Identify key components and their interactions
o Estimate performance parameters
 Simulate system behavior (e.g., queuing theory)

Existing system: Analyze performance bottlenecks

« Profiling of individual components
« Performance testing (stress testing, load testing, etc)
e Performance monitoring of distributed systems

Performance Analysis

What is the average waiting?

How many customers are waiting on average?

How long is the average service time?

What are the chances of one or more servers being idle?
What is the average utilization of the servers?

-> Early analysis of different designs for bottlenecks

-> Capacity planning

Queuing Theory

Queuing theory deals with the analysis of lines where customers wait to receive a service
« Waiting at Quiznos

Waiting to check-in at an airport

Kept on hold at a call center

Streaming video over the net

Requesting a web service

A queue is formed when request for services outpace the ability of the server(s) to service them
immediately

e Requests arrive faster than they can be processed (unstable queue)

o Requests do not arrive faster than they can be processed but their processing is delayed by some
time (stable queue)

Queues exist because infinite capacity is infinitely expensive and excessive capacity is excessively
expensive

ueuing Th

eory

Source

Single queue, single server

Source

Source 1

Single queue, multiple servers

Source 1

Source 2

Source 2

Source n

Source n

Multiple queues, single server

Multiple queues, multiple servers

>

e

>

>

—> Primary
D> Secondary

Analysis Steps (roughly)

ldentify system abstraction to analyze (typically architectural level,
e.g. services, but also protocols, datastructures and components,
parallel processes, networks)

Model connections and dependencies

Estimate latency and capacity per component (measurement and
testing, prior systems, estimates, ...)

Run simulation/analysis to gather performance curves

Evaluate sensitivity of simulation/analysis to various parameters
= (‘what-if questions’)

Simulation (e.g., JMT)

a JMODEL - Advanced queuing network design tool |Z||§|E|

File Edt Define Solve Help
bemlvonlo x> nngEo
(INEEISEET <> 1E -

G.Serazzi Ed. Performance Evaluation Modelling with JMT: learning by examples. Politecnico di
— Milano - DEI, TR 2008.09, 366 pp., June 2008

Profiling

Mostly used during development phase in single components

|#°] Vizualvm 1.2
File Applicaticns View Teaols Window Help
LR R
| Applications 4 m || SartPage m| s JavaZDemo (pid 4375) m|
= I Local [Crverview | [l Moniter | (= Thresds [45, Samper | (5 profier| (3 [erapshot] 12:57:27 4 8|
|87 Visuaivd
=gy JavalDema (pd 4376) Z Java2Demo (pid 4378)
() [snapshat] 10:57:27 AM Profs & z
+ " Remote = - o
B Snapehats | vew Civethods »| () Q@ &
Call Tree -Method Time [%6] v Time Time [CPU]) Irvocations [E.l
= E AWT-EveriQueus 0 I o) vt 1=
= 5 et EvertCespatchTheesd, [N 2is<: ... (oo MEIT s 110 E
=5 javaawt EventfepatchTore [N 2159 ... (100es) 05X ms 18—
=% fava. st EventDispwich [21533 ... (1cns) M523 e
=4 sevawt Evenisn: [INIGE 2 . 00 052Ims 11
: - 0 jeva st Event” I 21593 ... (100%) W52 me g~
Fl mn | i
;I'b'-lﬂ:l:fl:-l'ltﬂ‘l)d Self time ..« Seif time Seff ime (OPU)] | Invocabons [E]
|5 java e SuriGraphics2D drawstring | I 1501 e 16793 ms us ~
s, java 2d. SunGraphics 20U il [] 17 s [6.4%) 1351 ms B
| v, swing. Komponent. paimtimmedsal || 1218 ms [5.5%) ST Ams 104
i, Jvd 2 SarvGraphics 20, diranw] Eolira [2.0%) B9 ms 7
Ehthﬁ:m.Tﬂﬂ.ﬂM. <inits [| A ms [LAes] 404 ms 4
| b B Tl . 0 i oy =it L] g 7
B [Mathod Hame Fiber] -|
| "B call Tree | B Mot Spets | B combened | 1) Info

Performance Testing

« Load testing: Assure handling of maximum expected load

o Scalability testing: Test with increasing load

o Soak/spike testing: Overload application for some time, observe
stability

o« Stress testing: Overwhelm system resources, test graceful failure +
recovery

« Observe (1) latency, (2) throughput, (3) resource use
« All automateable; tools like JMeter

Performance Monitoring of Distr. Systems

reWeb , - Dashboard Top Business Transactions Transaction Snapshots Transaction Analysis Machine Snapshots
Default Flow Map « .“. ™
. u
&
0
‘ a2 Bl
. 0
@ _P.H. * 12 Q2 e
EFT, e I e T 2 innH +F
] Yy i . Business Transaction Health
Sy | QuestSoap
0 . d 0 critical, 0 warming. 1245 norma
° AGOS min 1.3% i \ X s) Server Health
. 9 102 by 4 i
ﬁ HT e 8 ernoes ;
» " Dewseeure - I e
Keyclient Y | 3 tion Sct ard
i e T h f
o Secure # - n
e r n Normal _ 983% 1320k
S g 2 B 06% 746
. . . <t ' . 0.1%
IDIMEgQuens H — - e - e 0.0 % <1
T . a1 L L
” - B WS PileStore y 1.1% o
L4
b s E (- Semoes .) Exceptions
ABasLABE 4 1.37% 1 - " B OWFS lme 3ms Exceptions 28,203 total 5.5k f min
P | . = Niarmiie HTTP Error Codes 11 toeal i]
0o = DB '-I ' _ . Error Page Redirects 67 to n
o
P » | Service Endpoints
% v .
‘ G_ | DGWProducts.checkConnection Ototal <1/
‘ 2 | min
= sea i
- = N INGErrorPage Ototal <1/
EXFERAN A Jﬂle v - mn
b SmECW Oracie DB - Or. JanWh the o DGWIA.queueGetList Ototal <1/
Legend bt Naot comparing against Baseline data min
Orade D8 . 40....0 - Production (37 | W P p——— Ntntal <11
Load 134.3k coms 6,410 cansrmin Response Time 598 ms average Errors 1.1% 1.46K erars 342 ororsimn
10000 1000 ms 1000
5000 500 ms 500
+] Oms 0
0415 PM 04:20 PM 04-25 PM 04:30 PM 04:35 PM__ 04:40 PM 04:15PM D4Z0OPM 0425 PM 04:30 PM_ 04:35PM 04:40PM 04:15 PM 04:20 PM 04:25 PM 04:35 PM _ 04:40 PM
— -

— Source: https:/blog.appdynamics.com/tag/fiserv/

file:///home/runner/work/s2024/s2024/lectures/_static/13_dataatscale/distprofiler.png
https://blog.appdynamics.com/tag/fiserv/

Performance Monitoring of Distributed
Systems

 Instrumentation of (Service) APlIs
« Load of various servers
o Typically measures: latency, traffic, errors, saturation

e Monitoring long-term trends

o Alerting

« Automated releases/rollbacks
« Canary testing and A/B testing

Summary

« Large amounts of data (training, inference, telemetry, models)

o Distributed storage and computation for scalability

« Common design patterns (e.g., batch processing, stream processing,
lambda architecture)

« Design considerations: mutable vs immutable data

o Distributed computing also in machine learning

 Lots of tooling for data extraction, transformation, processing

« Many challenges through distribution: failures, debugging,
performance, ...

Further Readings

o Molham Aref "Business Systems with Machine Learning" Invited Talk 2020

o Sawadogo, Pegdwendé, and Jérdbme Darmont. "On data lake architectures and
metadata management." Journal of Intelligent Information Systems 56, no. 1
(2021): 97-120.

o Warren, James, and Nathan Marz. Big Data: Principles and best practices of
scalable realtime data systems. Manning, 2015.

o Smith, Jeffrey. Machine Learning Systems: Designs that Scale. Manning, 2018.

o Polyzotis, Neoklis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2017. “Data Management Challenges in Production Machine Learning.” In
Proceedings of the 2017 ACM International Conference on Management of
Data, 1723-26. ACM.

https://www.youtube.com/watch?v=_bvrzYOA8dY
https://hal.archives-ouvertes.fr/hal-03114365/
https://bookshop.org/books/big-data-principles-and-best-practices-of-scalable-realtime-data-systems/9781617290343
https://bookshop.org/books/machine-learning-systems-designs-that-scale/9781617293337
https://dl.acm.org/doi/pdf/10.1145/3035918.3054782

Machine Learning in Production/Al Engineering o Christian Kaestner & Claire Le Goues, Carnegie Mellon University e Spring 2024

