
Machine Learning in ProductionMachine Learning in Production

Planning for OperationsPlanning for Operations
1



Operations

2



Readings
Required reading: Shankar, Shreya, Rolando Garcia, Joseph M.
Hellerstein, and Aditya G. Parameswaran. "

." arXiv preprint arXiv:2209.09125 (2022).

Recommended readings:
O'Leary, Katie, and Makoto Uchida. "

." Proc.
Conference on Machine Learning and Systems (MLSys) (2020).

Operationalizing machine
learning: An interview study

Common problems with
Creating Machine Learning Pipelines from Existing Code

3



https://arxiv.org/abs/2209.09125
https://research.google/pubs/pub48984.pdf

Learning Goals
Deploy a service for models using container infrastructure
Automate common configuration management tasks
Devise a monitoring strategy and suggest suitable components for
implementing it
Diagnose common operations problems
Understand the typical concerns and concepts of MLOps

4



Running Example: Blogging Platform with
Spam Filter

5



"Operations"

6



Operations

Provision and monitor the system
in production, respond to
problems

Avoid downtime, scale with
users, manage operating costs

Heavy focus on infrastructure

Traditionally sysadmin and
hardware skills

7



Service Level Objectives
Quality requirements in operations, such as

maximum latency
minimum system throughput
targeted availability/error rate
time to deploy an update
durability for storage

Each with typical measures

For the system as a whole or individual services

8



Example Service Level Objectives?

9



Operators on a Team
Operators cannot work in isolation

Rely on developers for software quality and performance

Negotiate service level agreements and budget (e.g., 99.9% vs
99.99% availability)

Risk management role (not risk avoidance)

10



Operations and ML
ML has distinct workloads and hardware requirements

Deep learning often pushes scale boundaries

Regular updates or learning in production

11



Common Themes
Observability is essential

Release management and automated deployments

Infrastructure as code and virtualization

Scaling deployments

Incident response planning

12



Dev vs. Ops

13



Common Release Problems?

14



Common Release Problems?

15



Common Release Problems (Examples)
Missing dependencies
Different compiler versions or library versions
Different local utilities (e.g. unix grep vs mac grep)
Database problems
OS differences
Too slow in real settings
Difficult to roll back changes
Source from many different repositories
Obscure hardware? Cloud? Enough memory?

16



Developers
Coding
Testing, static analysis, reviews
Continuous integration
Bug tracking
Running local tests and
scalability experiments
...

Operations
Allocating hardware resources
Managing OS updates
Monitoring performance
Monitoring crashes
Managing load spikes, …
Tuning database performance
Running distributed at scale
Rolling back releases
...

QA responsibilities in both roles

17



Quality Assurance does not stop in Dev
Ensuring product builds correctly (e.g., reproducible builds)
Ensuring scalability under real-world loads
Supporting environment constraints from real systems (hardware,
software, OS)
Efficiency with given infrastructure
Monitoring (server, database, Dr. Watson, etc)
Bottlenecks, crash-prone components, … (possibly thousands of
crash reports per day/minute)

18



DevOps

19



Key ideas and principles
Better coordinate between developers and operations
(collaborative)
Key goal: Reduce friction bringing changes from development into
production
Considering the entire tool chain into production (holistic)
Documentation and versioning of all dependencies and
configurations ("configuration as code")
Heavy automation, e.g., continuous delivery, monitoring
Small iterations, incremental and continuous releases

Buzz word!
20



21



Common Practices
All configurations in version control

Test and deploy in containers

Automated testing, testing, testing, ...

Monitoring, orchestration, and automated actions in practice

Microservice architectures

Release frequently

22



Heavy tooling and automation

23



file:///home/runner/work/s2024/s2024/lectures/_static/14_operations/devops_tools.jpg

Heavy tooling and automation -- Examples
Infrastructure as code — Ansible, Terraform, Puppet, Chef
CI/CD — Jenkins, TeamCity, GitLab, Shippable, Bamboo, Azure
DevOps
Test automation — Selenium, Cucumber, Apache JMeter
Containerization — Docker, Rocket, Unik
Orchestration — Kubernetes, Swarm, Mesos
Software deployment — Elastic Beanstalk, Octopus, Vamp
Measurement — Datadog, DynaTrace, Kibana, NewRelic,
ServiceNow

24



Continuous Delivery

25



Manual Release Pipelines

Source: https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond
26



https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

Continuous Integr.
Automate tests after commit
Independent test
infrastructure

Continuous Delivery
Full automation from commit
to deployable container
Heavy focus on testing,
reproducibility and rapid
feedback, creates transparency

Continuous
Deployment

Full automation from commit
to deployment
Empower developers, quick to
production
Encourage experimentation
and fast incremental changes
Commonly integrated with
monitoring and canary releases

27



Automate Everything

28



Example: Facebook Tests for Mobile Apps
Unit tests (white box)
Static analysis (null pointer warnings, memory leaks, ...)
Build tests (compilation succeeds)
Snapshot tests (screenshot comparison, pixel by pixel)
Integration tests (black box, in simulators)
Performance tests (resource usage)
Capacity and conformance tests (custom)

Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm.
. In Proceedings of the 2016

24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 12-23.
ACM, 2016.

Continuous deployment of mobile software at facebook (showcase)

29



https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

Release Challenges for Mobile Apps
Large downloads
Download time at user discretion
Different versions in production
Pull support for old releases?

Server side releases silent and quick, consistent

-> App as container, most content + layout from server

30



Real-world pipelines are complex

31



file:///home/runner/work/s2024/s2024/lectures/_static/14_operations/facebookpipeline.png

Containers and
Configuration Management

32



Containers
Lightweight virtual machine
Contains entire runnable
software, incl. all dependencies
and configurations
Used in development and
production
Sub-second launch time
Explicit control over shared
disks and network connections

33



Docker Example

Source:

FROM ubuntu:latest
MAINTAINER ...
RUN apt-get update -y
RUN apt-get install -y python-pip python-dev build-essential
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]
CMD ["app.py"]

http://containertutorials.com/docker-compose/flask-simple-app.html
34



http://containertutorials.com/docker-compose/flask-simple-app.html

Common configuration management
questions
What runs where?

How are machines connected?

What (environment) parameters does software X require?

How to update dependency X everywhere?

How to scale service X?

35



Ansible Examples
Software provisioning, configuration mgmt., and deployment tool
Apply scripts to many servers

[webservers]
web1.company.org
web2.company.org
web3.company.org

[dbservers]
db1.company.org
db2.company.org

[replication_servers]
...

This role deploys the mongod processe
- name: create data directory for mongo
 file: path={{ mongodb_datadir_prefix
 delegate_to: '{{ item }}'
 with_items: groups.replication_server

- name: create log directory for mongod
 file: path=/var/log/mongo state=direc

- name: Create the mongodb startup file
 template: src=mongod.j2 dest=/etc/ini

36



Puppet Example
Declarative specification, can be applied to many machines

$doc_root = "/var/www/example"

exec { 'apt-get update':
 command => '/usr/bin/apt-get update'
}

package { 'apache2':
 ensure => "installed",
 require => Exec['apt-get update']
}

37





source:

Speaker notes

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

Container Orchestration with Kubernetes
Manages which container to deploy to which machine

Launches and kills containers depending on load

Manage updates and routing

Automated restart, replacement, replication, scaling

Kubernetis master controls many nodes

Substantial complexity and learning curve

38



CC BY-SA 4.0 Khtan66
39



https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

Monitoring
Monitor server health
Monitor service health
Monitor telemetry (see past lecture)
Collect and analyze measures or log files
Dashboards and triggering automated decisions

Many tools, e.g., Grafana as dashboard, Prometheus for metrics,
Loki + ElasticSearch for logs
Push and pull models

40



41



The DevOps Mindset
Consider the entire process and tool chain holistically
Automation, automation, automation
Elastic infrastructure
Document, test, and version everything
Iterate and release frequently
Emphasize observability
Shared goals and responsibilities

42



https://ml-ops.org/
43



https://ml-ops.org/

On Terminology
Many vague buzzwords, often not clearly defined
MLOps: Collaboration and communication between data scientists
and operators, e.g.,

Automate model deployment
Model training and versioning infrastructure
Model deployment and monitoring

AIOps: Using AI/ML to make operations decision, e.g. in a data
center
DataOps: Data analytics, often business setting and reporting

Infrastructure to collect data (ETL) and support reporting
Combines agile, DevOps, Lean Manufacturing ideas

44



MLOps Overview
Integrate ML artifacts into software release process, unify process
(i.e., DevOps extension)

Automated data and model validation (continuous deployment)

Continuous deployment for ML models: from experimenting in
notebooks to quick feedback in production

Versioning of models and datasets (more later)

Monitoring in production (discussed earlier)

Further reading: MLOps principles
45



https://ml-ops.org/content/mlops-principles.html

Tooling Landscape LF AI

46



https://landscape.lfai.foundation/

MLOps Goals and Principles
Like DevOps: Automation, testing, holistic, observability, teamwork

Supporting frequent experimentation, rapid prototyping, and
constant iteration

3V: Velocity, Validation, Versioning

47



MLOps Tools -- Examples
Model registry, versioning and metadata: MLFlow, Neptune,
ModelDB, WandB, ...
Model monitoring: Fiddler, Hydrosphere
Data pipeline automation and workflows: DVC, Kubeflow, Airflow
Model packaging and deployment: BentoML, Cortex
Distributed learning and deployment: Dask, Ray, ...
Feature store: Feast, Tecton
Integrated platforms: Sagemaker, Valohai, ...
Data validation: Cerberus, Great Expectations, ...

Long list: https://github.com/kelvins/awesome-mlops

48



https://github.com/kelvins/awesome-mlops

MLOps Common Goals
Enable experimentation with data and models, small incremental
changes; hide complexity from data scientists

Automate (nuanced) model validation (like CI) and integrate with
testing in production (monitoring)

Dynamic view of constantly evolving training and test data; invest in
data validation

Version data, models; track experiment results

49



Recall: DevOps Mindset
Consider the entire process and tool chain holistically
Automation, automation, automation
Elastic infrastructure
Document, test, and version everything
Iterate and release frequently
Emphasize observability
Shared goals and responsibilities

50



Breakout: MLOps Goals
For the blog spam filter scenario, consider DevOps and MLOps
infrastructure (CI, CD, containers, config. mgmt, monitoring, model
registry, pipeline automation, feature store, data validation, ...)

As a group, tagging group members, post to #lecture:

Which DevOps or MLOps goals to prioritize?
Which tools to try?

51



Incident Response Planning

52



Mistakes will Happen. Be Prepared
Even with careful anticipation and mitigation, mistakes will happen

Anticipated or not

ML as unreliable component raises risks

Design mitigations help avoid anticipated mistakes

Incident response plan prepares for unanticipated or unmitigated
mistakes

53



Incident Response Plan
Provide contact channel for problem reports
Have expert on call
Design process for anticipated problems, e.g., rollback, reboot,
takedown
Prepare for recovery
Proactively collect telemetry
Investigate incidents
Plan public communication (responsibilities)

54



Incident Resp. Plan for Blog's Spam Filter?

55



Excursion: Organizational
Culture

56



Organizational Culture
“this is how we always did things”

Implicit and explicit assumptions and rules guiding behavior

Often grounded in history, very difficult to change

Examples:
Move fast and break things
Privacy first
Development opportunities for all employees

57



Source: Bonkers World
58



Organizational Culture

59



Levels of Organizational Culture
Artifacts -- What we see

Behaviors, systems, processes, policies

Espoused Values -- What we say
Ideals, goals, values, aspirations

Basic assumptions -- What we believe
Underlying assumptions, "old ways of doing things", unconsciously
taken for granted

Iceberg models: Only artifacts and espoused values visible, but
practices driven by invisible basic assumptions

60



Culture Change
Changing organizational culture is very difficult

Top down: espoused values, management buy in, incentives

Bottom up: activism, show value, spread

Examples of success of failure stories?

61



MLOps Culture
Dev with Ops instead of Dev vs Ops

A culture of collaboration, joint goals, joint responsibilities

Artifacts: Joint tools, processes

Underlying assumptions: Devs provide production-ready code; Ops
focus on value, automation is good, observability is important, ...

62



Resistance to DevOps Culture?
From "us vs them" to blameless culture -- How?

Introduction of new tools and processes -- Disruptive? Costly?
Competing with current tasks? Who wants to write tests?

Future benefits from rapid feedback and telemetry -- Unrealistic?

Automation and shifting responsibilities -- Hiring freeze and layoffs?

Past experience with poor adoption -- All costs, no benefits?
Compliance only?

63



Successful DevOps Adoption
Need supportive management; typically driven by advocacy of
individuals, convincing colleagues and management

Education to generate buy-in

Experts and consultants can help with initial costly transition

Demonstrate benefits on small project, promote afterward

Focus on key bottlenecks, over perfect adoption (e.g., prioritize
experimentation, test automation, rapid feedback with telemetry)

Luz, Welder Pinheiro, Gustavo Pinto, and Rodrigo Bonifácio. “
.” Journal of Systems and Software 157 (2019): 110384.

Adopting DevOps in the real world: A
theory, a model, and a case study 64



http://gustavopinto.org/lost+found/jss2019.pdf

Summary
Plan for change, plan for operations
Operations requirements: service level objectives
DevOps integrations development and operations tasks with joint
goals and tools

Heavy automation
Continuous integration and continuous delivery
Containers and configuration management
Monitoring

MLOps extends this to operating pipelines and deploying models
Organizational culture is slow and difficult to change

65



Further Reading
Shankar, Shreya, Rolando Garcia, Joseph M. Hellerstein, and Aditya G. Parameswaran.
" ." arXiv preprint arXiv:2209.09125 (2022).

Beyer, Betsy, Chris Jones, Jennifer Petoff, and Niall Richard Murphy.
. O’Reilly, 2016.

Kim, Gene, Jez Humble, Patrick Debois, John Willis, and Nicole Forsgren.
. IT

Revolution, 2nd ed, 2021.
Treveil, Mark, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien
Lavoillotte, Makoto Miyazaki, and Lynn Heidmann.

. O’Reilly, 2020.
Luz, Welder Pinheiro, Gustavo Pinto, and Rodrigo Bonifácio. “

.” Journal of Systems and Software 157 (2019): 110384.
Schein, Edgar H. Organizational culture and leadership. 5th ed. John Wiley & Sons, 2016.

Operationalizing machine learning: An interview study
https://ml-ops.org/

Site reliability engineering:
How Google runs production systems

The DevOps Handbook:
How to Create World-Class Agility, Reliability, & Security in Technology Organizations

Introducing MLOps: How to Scale Machine
Learning in the Enterprise

Adopting DevOps in the real world:
A theory, a model, and a case study

66



https://arxiv.org/abs/2209.09125
https://ml-ops.org/
https://sre.google/sre-book/table-of-contents/
https://bookshop.org/books/the-devops-handbook-how-to-create-world-class-agility-reliability-security-in-technology-organizations/9781950508402
https://bookshop.org/books/introducing-mlops-how-to-scale-machine-learning-in-the-enterprise/9781492083290
http://gustavopinto.org/lost+found/jss2019.pdf

Machine Learning in Production/AI Engineering • Christian Kaestner & Claire Le Goues, Carnegie Mellon University • Spring 2024



