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Diving into Fairness...
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Reading
Required:

Nina Grgic-Hlaca, Elissa M. Redmiles, Krishna P. Gummadi, and Adrian Weller. 

In WWW, 2018.

Recommended:
Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter and Julia Lane. 

. Chapter 11, 2nd ed, 2020
Solon Barocas and Moritz Hardt and Arvind Narayanan. . 2019
(incomplete book)
Pessach, Dana, and Erez Shmueli. " ." ACM Compu�ng
Surveys (CSUR) 55, no. 3 (2022): 1-44.

Human
Percep�ons of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Predic�on

Big Data and Social Science:
Data Science Methods and Tools for Research and Prac�ce

Fairness and Machine Learning

A Review on Fairness in Machine Learning
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https://dl.acm.org/doi/pdf/10.1145/3178876.3186138
https://textbook.coleridgeinitiative.org/
http://www.fairmlbook.org/
https://dl.acm.org/doi/full/10.1145/3494672


Learning Goals
Understand different defini�ons of fairness
Discuss methods for measuring fairness
Outline interven�ons to improve fairness at the model level
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Fairness: Defini�ons
How do we measure fairness of an ML model?
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Fairness is s�ll an ac�vely studied & disputed
concept!
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Fairness: Defini�ons
An�-classifica�on (fairness through blindness)
Group fairness (independence)
Equalized odds (separa�on)
...and numerous others and varia�ons!
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Running Example:
Mortgage Applica�ons

Large loans repaid over long periods
Home ownership is key path to build genera�onal wealth
Past decisions o�en discriminatory (redlining)
Replace biased human decisions by accurate ML model

income, other debt, home value
past debt and payment behavior (credit score)
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Recall: What is fair?
Fairness discourse asks ques�ons about how to treat people and whether
trea�ng different groups of people differently is ethical. If two groups of
people are systema�cally treated differently, this is o�en considered
unfair.
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Recall: What is fair?
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What is fair in mortgage applica�ons?
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slack vote

Speaker notes



Caveat on Intersec�onality
Individuals can and do fall into mul�ple groups!

Subgroup fairness gets extremely technically complicated quickly.

We therefore focus on the simple cases for the purposes of the
material in this class.
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Redlining

Withold services (e.g., mortgage,
educa�on, retail) from people in
neighborhoods deemed "risky"

Map of Philadelphia, 1936, Home
Owners' Loan Corps. (HOLC)

Classifica�on based on
es�mated "riskiness" of loans
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Past bias, different star�ng posi�ons

Source: Federal Reserve’s Survey of Consumer Finances
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https://www.federalreserve.gov/econres/scfindex.htm




much of fairness discourse here is trying to account for unequal starting positions

Speaker notes



Fairness: Defini�ons
An�-classifica�on (fairness through blindness)
Group fairness (independence)
Equalized odds (separa�on)
...and numerous others and varia�ons!
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An�-Classifica�on
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An�-Classifica�on: Example

"A�er Ms. Horton removed all signs of Blackness, a second appraisal
valued a Jacksonville home owned by her and her husband, Alex
Horton, at 40 percent higher."

h�ps://www.ny�mes.com/2022/03/21/realestate/remote-home-appraisals-racial-bias.html
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https://www.nytimes.com/2022/03/21/realestate/remote-home-appraisals-racial-bias.html


An�-Classifica�on

Easy to implement, but any limita�ons?
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Recall: Proxies
Features correlate with protected a�ributes
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Also, recall: Not all discrimina�on is
harmful
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An�-Classifica�on

Ignore certain sensi�ve a�ributes when making a decision
Advantage: Easy to implement and test
Limita�ons

Sensi�ve a�ributes may be correlated with other features
Some ML tasks need sensi�ve a�ributes (e.g., medical diagnosis)
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Ensuring An�-Classifica�on
How to train models that are fair w.r.t. an�-classifica�on?
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Ensuring An�-Classifica�on
How to train models that are fair w.r.t. an�-classifica�on?

--> Simply remove features for protected a�ributes from training and
inference data

--> Null/randomize protected a�ribute during inference

(does not account for correlated a�ributes, is not required to)
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Tes�ng An�-Classifica�on
How do we test that a classifier achieves an�-classifica�on?
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Tes�ng An�-Classifica�on
Straigh�orward invariant for classifier  and protected a�ribute :

(does not account for correlated a�ributes, is not required to)

Test with any test data, e.g., purely random data or exis�ng test data

Any single inconsistency shows that the protected a�ribute was used.
Can also report percentage of inconsistencies.

See for example: Galhotra, Sainyam, Yuriy Brun, and Alexandra Meliou. "
." In Proceedings of the 2017 11th Joint Mee�ng on Founda�ons of

So�ware Engineering, pp. 498-510. 2017.

f p

∀x. f(x[p ← 0]) = f(x[p ← 1])

Fairness tes�ng: tes�ng
so�ware for discrimina�on
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http://people.cs.umass.edu/brun/pubs/pubs/Galhotra17fse.pdf


An�-Classifica�on Discussion
Tes�ng of an�-classifica�on barely needed, because easy to ensure by
construc�ng during training or inference!

An�-classifica�on is a good star�ng point to think about protected
a�ributes

Useful baseline for comparison

Easy to implement, but only effec�ve if (1) no proxies among features
and (2) protected a�ributes add no predic�ve power
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Fairness: Defini�ons
An�-classifica�on (fairness through blindness)
Group fairness (independence)
Equalized odds (separa�on)
...and numerous others and varia�ons!
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Group fairness
Key idea: Outcomes ma�er, not accuracy!

Compare outcomes across two groups
Similar rates of accepted loans across racial/gender groups?
Similar chance of being hired/promoted between gender groups?
Similar rates of (predicted) recidivism across racial groups?
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Disparate impact vs. disparate treatment
Disparate treatment: Prac�ces or rules that treat a certain protected
group(s) differently from others

e.g., Apply different mortgage rules for people from different
backgrounds

Disparate impact: Neutral rules, but outcome is worse for one or
more protected groups

Same rules are applied, but certain groups have a harder �me
obtaining mortgage in a par�cular neighborhood
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Group fairness in discrimina�on law
Relates to disparate impact and the four-fi�h rule

Can sue organiza�ons for discrimina�on if they
mostly reject job applica�ons from one minority group (iden�fied
by protected classes) and hire mostly from another
reject most loans from one minority group and more frequently
accept applicants from another
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Nota�on
: Feature set (e.g., age, race, educa�on, region, income, etc.,)

: Sensi�ve a�ribute (e.g., gender)
: Regression score (e.g., predicted likelihood of on-�me loan

payment)
: Classifier output

 if and only if  for some threshold 
e.g., Grant the loan ( ) if the likelihood of paying back >
80%
: Target variable being predicted (  if the person actually

pays back on �me)

X
A ∈ X
R

Y ′

= 1Y ′ R > T T
= 1Y ′

Y Y = 1

Se�ng classifica�on thresholds: Loan lending example
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https://research.google.com/bigpicture/attacking-discrimination-in-ml


Group Fairness

Also called independence or demographic parity
Mathema�cally, 

Predic�on ( ) must be independent of the sensi�ve a�ribute (
)

Examples:
The predicted rate of recidivism is the same across all races
Both women and men have the equal probability of being
promoted

i.e., P[promote = 1 | gender = M] = P[promote = 1 | gender = F]

P [ = 1|A = a] = P [ = 1|A = b]Y ′ Y ′

⊥ AY ′

Y ′

A
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probability is the same across all groups

Speaker notes



Group Fairness Limita�ons
What are limita�ons of group fairness?
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Group Fairness Limita�ons
Ignores possible correla�on between  and 

Rules out perfect predictor  when  &  are correlated!
Permits abuse and laziness: Can be sa�sfied by randomly assigning
a posi�ve outcome ( ) to protected groups

e.g., Randomly promote people (regardless of their job
performance) to match the rate across all groups

Y A
= YY ′ Y A

= 1Y ′
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firing practices

Speaker notes



Adjus�ng Thresholds for Group Fairness
Select different classifica�on thresholds ( , ) for different groups (A
= 0, A = 1) to achieve group fairness, such that

Example: Mortgage applica�on
R: Likelihood of paying back the loan on �me
Suppose: With a uniform threshold used (i.e., R = 80%), group fairness is not
achieved

P[R > 0.8 | A = 0] = 0.4, P[R > 0.8 | A = 1] = 0.7
Adjust thresholds to achieve group fairness

P[R > 0.6 | A = 0] = P[R > 0.8 | A = 1]
Wouldn't group A = 1 argue it's unfair? When does this type of adjustment
make sense?

t0 t1

P [R > |A = 0] = P [R > |A = 1]t0 t1
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Tes�ng Group Fairness
How would you test whether a classifier achieves group fairness?
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Tes�ng Group Fairness
Collect realis�c, representa�ve data (not randomly generated!)

Use exis�ng valida�on/test data
Monitor produc�on data
(Somehow) generate realis�c test data, e.g. from probability
distribu�on of popula�on

Separately measure the rate of posi�ve predic�ons
e.g., P[promoted = 1 | gender = M], P[promoted = 1 | gender = F] =
?

Report issue if the rates differ beyond some threshold  across groupsϵ
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Equalized odds
An�-classifica�on (fairness through blindness)
Group fairness (independence)
Equalized odds (separa�on)
...and numerous others and varia�ons!
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Equalized odds
Key idea: Focus on accuracy (not outcomes) across two groups

Similar default rates on accepted loans across racial/gender
groups?
Similar rate of "bad hires" and "missed stars" between gender
groups?
Similar accuracy of predicted recidivism vs actual recidivism across
racial groups?

Accuracy ma�ers, not outcomes!
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Equalized odds in discrimina�on law
Relates to disparate treatment

Typically, lawsuits claim that protected a�ributes (e.g., race, gender)
were used in decisions even though they were irrelevant

e.g., fired over complaint because of being La�no, whereas other
White employees were not fired with similar complaints

Must prove that the defendant had inten�on to discriminate
O�en difficult: Relying on shi�ing jus�fica�ons, inconsistent
applica�on of rules, or explicit remarks overheard or documented
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Equalized odds

Sta�s�cal property of separa�on: 
Predic�on must be independent of the sensi�ve a�ribute
condi�onal on the target variable

P [ = 1 ∣ Y = 0, A = a] = P [ = 1 ∣ Y = 0, A = b]Y ′ Y ′

P [ = 0 ∣ Y = 1, A = a] = P [ = 0 ∣ Y = 1, A = b]Y ′ Y ′

⊥ A|YY ′
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Review: Confusion Matrix

Can we explain separa�on in terms of model errors?
P [ = 1 ∣ Y = 0, A = a] = P [ = 1 ∣ Y = 0, A = b]Y ′ Y ′

P [ = 0 ∣ Y = 1, A = a] = P [ = 0 ∣ Y = 1, A = b]Y ′ Y ′
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Separa�on
 (FPR

parity)

 (FNR
parity)

: Predic�on must be independent of the sensi�ve
a�ribute condi�onal on the target variable
i.e., All groups are suscep�ble to the same false posi�ve/nega�ve
rates
Example: Y': Promo�on decision, A: Gender of applicant: Y: Actual
job performance

P [ = 1 ∣ Y = 0, A = a] = P [ = 1 ∣ Y = 0, A = b]Y ′ Y ′

P [ = 0 ∣ Y = 1, A = a] = P [ = 0 ∣ Y = 1, A = b]Y ′ Y ′

⊥ A|YY ′
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Tes�ng Separa�on
Requires realis�c representa�ve test data (telemetry or
representa�ve test data, not random)

Separately measure false posi�ve and false nega�ve rates
e..g, for FNR, compare P[promoted = 0 | female, good employee] vs
P[promoted = 0 | male, good employee]

How is this different from tes�ng group fairness?
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need labels hard in some applications

Speaker notes



Breakout: Cancer Prognosis

In groups, post to #lecture tagging members:
Does the model meet an�-classifica�on fairness w.r.t. gender?
Does the model meet group fairness?
Does the model meet equalized odds?
Is the model fair enough to use?
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prob cancer male vs female

Speaker notes



Other fairness measures
An�-classifica�on (fairness through blindness)
Group fairness (independence)
Equalized odds (separa�on)**
...and numerous others and varia�ons!
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Many measures
Many measures proposed

Some specialized for tasks (e.g., ranking, NLP)

Some consider downstream u�lity of various outcomes

Most are similar to the three discussed
Comparing different measures in the error matrix (e.g., false
posi�ve rate, li�)
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Outlook: Building Fair ML-
Based Products
Next lecture: Fairness is a system-wide concern

Iden�fying and nego�a�ng fairness requirements
Fairness beyond model predic�ons (product design, mi�ga�ons,
data collec�on)
Fairness in process and teamwork, barriers and responsibili�es
Documen�ng fairness at the interface
Monitoring
Promo�ng best prac�ces
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Summary
Three defini�ons of fairness: An�-classifica�on, group fairness,
equalized odds
Tradeoffs between fairness criteria

What is the goal?
Key: how to deal with unequal star�ng posi�ons

Improving fairness of a model
In all pipeline stages: data collec�on, data cleaning, training,
inference, evalua�on
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Further Readings
 Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter and Julia

Lane. 
. Chapter 11, 2nd ed, 2020

 Solon Barocas and Moritz Hardt and Arvind Narayanan. 
. 2019 (incomplete book)

 Pessach, Dana, and Erez Shmueli. "
." ACM Compu�ng Surveys (CSUR) 55, no. 3

(2022): 1-44.

Big Data and Social Science: Data Science Methods and Tools
for Research and Prac�ce

Fairness
and Machine Learning

A Review on Fairness in
Machine Learning
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https://textbook.coleridgeinitiative.org/
http://www.fairmlbook.org/
https://dl.acm.org/doi/full/10.1145/3494672


Prac��oner Challenges
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