(Slicing, Capabilities, Invariants, Simulatior;mZ ...)

More model-level QA...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance, Safety
versioning,
reproducibility

Security and
privacy

Fairness Interpretability
and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture

Learning Goals

e Curate validation datasets for assessing model quality, covering
subpopulations and capabilities as needed

e Explain the oracle problem and how it challenges testing of
software and models

e Use invariants to check partial model properties with automated
testing

e Select and deploy automated infrastructure to evaluate and
monitor model quality

Model Quality

First Part: Measuring Prediction Accuracy (Done)
e the data scientist's perspective

Second Part: What is Correctness Anyway? (Today)
e the role and lack of specifications, validation vs verification

Third Part: Learning from Software Testing (Today)
e unit testing, test case curation, invariants, simulation

Later: Testing in Production
e monitoring, A/B testing, canary releases (in 2 weeks)

THIS 1S YOUR MACHINE LEARNING SYSTET1?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT I THE ANSLERS ARE WJRONG?)

JUST STIR THE PILE DNTIL
THEY START [OOKING RIGHT.

= XKCD 1838, cc-by-nc 2.5 Randall Munroe

https://xkcd.com/1838/

Curating Validation Data &

Input Slicing

\\ AT P ;
" B
\. “ T —
% \ i """"1.,:
=N

Breakout Discussion

Write a few tests for the following program:

def nextDate(year: Int, month: Int, day: Int) = ...

A test may look like:

assert nextDate(2021, 2, 8) == (2021, 2, 9);

As a group, discuss how you select tests. Discuss how many tests you need to feel confident.

Post answer to #lecture tagging group members in Slack using template:

Selection strategy: ...
Test quantity: ...

Speaker notes

Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on implementation

Will not randomly sample from distribution of all days

The V-Model

System validation plan

Requirements

analysis

Integration test plan

System testing /

testing in production

Architectural design === === s m i m e Integration testing

Unit test plan

Low-level design === Unit testing

Implementation

Software Test Case Design

Opportunistic/exploratory testing: Add some unit tests, without much planning

Specification-based testing ("black box"): Derive test cases from specifications

e Boundary value analysis
e Equivalence classes

e Combinatorial testing

e Random testing

Structural testing ("white box"): Derive test cases to cover implementation paths

e Line coverage, branch coverage
e Control-flow, data-flow testing, MCDC(, ...

Test execution usually automated, but can be manual too; automated generation
= from specifications or code possible

Example: Boundary Value Testing

Analyze the specification, not the implementation!
Key Insight: Errors often occur at the boundaries of a variable value

For each variable select (1) minimum, (2) min+1, (3) medium, (4) max-
1, and (5) maximum; possibly also invalid values min-1, max+1

Example: nextDate (2015, 6, 13) = (2015, 6, 14)
e Boundaries?

Example: Equivalence classes

Idea: Typically many values behave similarly, but some groups of
values are different

Equivalence classes derived from specifications (e.g., cases, input
ranges, error conditions, fault models)

Example nextDate (2015, 6, 13)
e |leap years, month with 28/30/31 days, days 1-28, 29, 30, 31

Pick 1 value from each group, combine groups from all variables

Exercise

def busTicketPrice(age: Int,
datetime: LocalDateTime,
rideTime: Int)

suggest test cases based on boundary value analysis and equivalence
class testing

Selecting Validation Data for Model
Quality?

e Validation data should reflect usage data

e Be aware of data drift (face recognition during pandemic, new
patterns in credit card fraud detection)

e "Out of distribution" predictions often low quality (it may even be
worth to detect out of distribution data in production, more later)

(note, similar to requirements validation: did we hear all/representative
stakeholders)

Not All Inputs are Equal: Frequent Cases

"Call mom" "What's the weather tomorrow?" "Add asafetida to my
_ shopping list"

Not All Inputs are Equal: Edge Cases

http://bit.ly/2tvCCPK

THE MAGIC ROUNDABOUT

Ring road
Cirencester
A4289 \

®- @ (M)
http://bit.ly/2top1KD —@. .®- Marlborough
https://dailym.ai/2K7kNS§ Town @ Burford
centre Oxford

.

A4312

Not All Inputs are Equal

some random mistakes vs rare but biased mistakes?

e A system to detect when somebody is at the door that never works
for people under 5ft (1.52m)

e A spam filter that deletes alerts from banks

e Technology from Amazon, Apple, Google, IBM and Microsoft
misidentified 35 percent of words from people who were black.
White people fared much better. -- NYTimes March 2020

https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html

How do you identify Important Inputs?

(We already hinted so...)

ldentify Important Inputs

Curate Validation Data for Specific Problems and Subpopulations:

e Important inputs ("call mom") -- expect very high accuracy

m closest equivalent to unit tests
e Different subpopulations (e.g., accents) -- expect comparable accuracy
e Challenging cases or stretch goals -- accept lower accuracy

Derive from requirements, experts, user feedback, expected problems
etc. Think specification-based testing.

Access to Important Inputs: Partitioning

o Guide testing by identifying groups and analyzing accuracy of
subgroups
m Often for fairness: gender, country, age groups, ...
= Possibly based on business requirements or cost of mistakes

e Slice test data by population criteria, also evaluate interactions

o |dentifies problems and plan mitigations, e.g., enhance with more
data for subgroup or reduce confidence

Good reading: Barash, Guy, Eitan Farchi, llan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel
= Zalmanovici. "Bridging the gap between ML solutions and their business requirements using feature

Input Partitioning Example

Slice and hypothesis on model's cat recognition behavior

Source: Johnson, Nari, et al. "Where Does My Model Underperform? A Human Evaluation of Slice
Discovery Algorithms." In HCOMP 2023

Input Partitioning Example

Multiple slices on image recognition, and model comparison

¢ Exploration := Analysis
Slices Samples 42% Accuracy 2/3 tests passing Export Report
Pointy Ears {. .\ P4y «
9 e =%’z Slice Trend Test Model A Model B
Metadata dog cat cat PointyEars -~ >70 42 73
class
o "3 (. A Whiskers ~ —— >80 85 86
dog cat 2 xR ! b4
brightness cat dog cat Small Nose —- >80 82 79

—E=—— {x\ tx'{ 0

Example: Model Impr. at Apple (Overton)

Supervision Data

Schema

Payloads + Tasks

(specified once)

. Actions

E @ Add/augment slices &

Fine-grained
quality reports

task 1 | task 2

slice 1

— A Add labeling functions <———=
E Add synthetic examples

Combine Train &
Supervision Tune Models

cie— i — @

v
slice2| v
V4
x

__

Create
Deployable Model

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "Overton: A Data System
_ for Monitoring and Improving Machine-Learned Products." arXiv preprint arXiv:1909.05372 (2019).

https://arxiv.org/abs/1909.05372

Example: Model Impr. at Apple (Overton)

e Focus engineers on creating training and validation data, not on
model search (AutoML)

e Flexible infrastructure to slice telemetry data to identify
underperforming subpopulations -> focus on creating better
training data (better, more labels, in semi-supervised learning

setting)

Input Partitioning Discussion

How to slice evaluation data for cancer prognosis?

Behavioral Testing
(Capabilities)

Further reading: Christian Kaestner. Rediscovering Unit Testing: Testing Capabilities of ML Models.
— Toward Data Science, 2021.

https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81

Testing Capabilities

Core idea: Define "capabilities” that the model should grasp in order
to do a test well, and create targeted test cases for those capabilities.

MFT: 'Negated negative should 188 542 204 132 26 Tl}e f’ood is not poor. pos or peutral
be positive or neutral It isn’t a lousy customer service. pos or neutral

MFT: Negated neutral should
still be neutral

This aircraft is not private. neutral

404396 742 984 954 This is not an international flight. neutral

Negation

I thought the plane would be awful, but it wasn’t. pos or neutral
I thought I would dislike that plane, but I didn’t. pos or neutral

MFT: Negation of negative at

the end, should be pos. or neut. 1000 904 1000 848 7.2

I wouldn’t say, given it’s a Tuesday, that this pilot was great. neg
I don’t think, given my history with airplanes, that this is an amazing staff. neg

MFT: Negated positive with

neutral content in the middle 98.4 100.0 100.0 74.0 30.2

MFT: Author sentiment is more 454 624 680 388 30.0 Some people think you are excellent, but I think you are nasty. neg
important than of others ’ ' ' ' " Some people hate you, but I think you are exceptional. pos

Where do capabilities come from?

Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://www.cs.cmu.edu/~sherryw/assets/pubs/2020-checklist.pdf

Capabilities and where they come from

In the paper we listed a bunch of
standard, "shared" capabilities across
NLP tasks -- e.g. whatever model it is, it
should be able to handle negation,
synonyms, etc., just that the model
should react in different ways.

Should be more use-case specific and
from domain knowledge!

Capabilities

Descriptions

Vocab/PQOS

Named entities

important words or word types for the task.

appropriately understanding named entities.

Nagation understand the negation words.

Taxonomy synonyms, antonyms, etc.

Robustness to typos, irrelevant changes, etc.

Coreference resolve ambiguous pronouns, etc.

Fairness not biasing towards certain gender/race groups.

Semantic Role

understanding roles such as agent, object, etc.

Labeling
Logic handle symmetry, consistency, and conjunctions.
Temporal understand order of events.

Strategies for identifying capabilities

e Analyze common mistakes (e.g., classify past mistakes in cancer
pPrognosis)

e Use existing knowledge about the problem (e.g., linguistics
theories)

e Observe humans (e.g., how do radiologists look for cancer)

e Derive from requirements (e.g., fairness)

e Causal discovery from observational data?

Testing Capabilities

Examples of Capabilities

What could be capabilities of the cancer classifier?

Capabilities vs Specifications vs Slicing

Capabilities are partial specifications of expected behavior (nhot
expected to always hold)

Some capabilities correspond to slices of existing test data, for others
we may need to create new data

Generating Test Data for Capabilities

Idea 1: Domain-specific generators

Testing negation in sentiment analysis with template:
I {NEGATION} {POS_VERB} the {THING}.

Testing texture vs shape priority with artificial generated images:

{a) Texture image (b) Content image (¢) Texture-shape cue conflict

81.4% Indian elephant T1.1% tabby cat 63.9% Indian e
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Generating Test Data for Capabilities

Idea 2: Mutating existing inputs
e Testing synonyms in sentiment analysis by replacing words with

synonyms, keeping label

e Testing robust against noise and distraction add and false 1s
not true orrandom URLs to text

INV: Add randomly generated

@JetBlue that selfie was extreme. @pi9QDK INV

should not change predictions

Robust URLs and handles to tweets 926 134 248 114 74 @united stuck because staff took a break? Not happy 1K.... https://t.co/PWKI1jb INV
INV: Swap one character with @JetBlue + @JeBtlue I cri INV
its neighbor (typo) >.6 102 104 52 38 @SouthwestAir no thanks - thakns INV
INV: Switching locations 70 208 148 76 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV
% should not change predictions ’ ' ‘ ‘ " @VirginAmerica [miss the #nerdbird in San Jose = Denver INV
Z INV: Switching person names 24 151 91 66 24 ...Airport agents were horrendous. Sharon » Erin was your saviour INV

@united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

Generating Test Data for Capabilities

Idea 3: Crowd-sourcing test creation

e Testing sarcasm in sentiment analysis: Ask humans to minimally
change text to flip sentiment with sarcasm

e Testing background in object detection: Ask humans to take
pictures of specific objects with unusual backgrounds

Recasting fact as hoped for The world of Atlantis, hidden beneath the earth’s core, is fantastic
The world of Atlantis, hidden beneath the earth’s core is supposed
to be fantastic

Suggesting sarcasm thoroughly captivating thriller-drama, taking a deep and real-
istic view
thoroughly mind numbing *‘thriller-drama™, taking a “‘deep™
and “realistic” (who are they kidding?) view

Inserting modifiers The presentation of simply Atlantis’ landscape and setting
The presentation of Atlantis’ predictable landscape and setting

Generating Test Data for Capabilities

Idea 4: Slicing test data

Testing negation in sentiment analysis by finding sentences containing

: Actions Fine-grained

! quality reports

: task 1 | task 2

E @ Add/augment slices & slice 1| v v
<= fx Add labeling functions <——— z::z:g : :
JSON ! -

! é Add synthetic examples Sice 4 % v

Generating Test Data for Capabilities

Idea 5: Directly synthesize data using LLMs

This can give you "pseudo" labeled data for tasks/capabilities largest
models are known to have. Known as "distillation"

Table 1: Prompt template for the NYT news dataset.

Method | Prompt

SimPrompt | Suppose you are a news writer. Please generate a {topic-class} news in NYT.

Suppose you are a news writer. Please generate a {topic-class} news in NYT following the requirements below:
1. Should focus on {subtopicl;
AttrPrompt | 2. Should be in length between {length:min-words} and {length:max-words} words;
3. The writing style of the news should be {style};
4. The location of the news should be in {1location}.

Yu, Yue, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J. Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. "Large language model as attributed training data generator: A tale of diversity
— and bias." Advances in Neural Information Processing Systems 36 (2024).

Generating Test Data for Capabilities

How to generate test data for capabilities of the cancer classifier?

Testing vs Training Capabilities

e Dual insight for testing and training

o Strategies for curating test data can also help select training data

e Generate capability-specific training data to guide training (data
augmentation)

Recasting fact as hoped for The world of Atlantis, hidden beneath the earth’s core, is fantastic
The world of Atlantis, hidden beneath the earth’s core is supposed
to be fantastic

Suggesting sarcasm thoroughly captivating thriller-drama, taking a deep and real-
istic view
thoroughly mind numbing *‘thriller-drama™, taking a *“‘deep™
and “realistic” (who are they kidding?) view

Inserting modifiers The presentation of simply Atlantis’ landscape and setting
The presentation of Atlantis’ predictable landscape and setting

Further reading on using domain knowledge during training: Von Rueden, Laura, Sebastian Mayer,
— Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. "Informed machine learning-towards a
~ taxonomy of explicit integration of knowledge into machine learning." Learning 18 (2019): 19-20.

Why Augmentation: Generalization beyond
Training Distribution?

e Typically training and validation data from
same distribution (i.i.d. assumption!)
e Many models can achieve similar accuracy
e Models that learn "right" abstractions
possibly indistinguishable from models that
use shortcuts
e Some models generalize better to other
distributions not used in training
= e.g., cancer images from other hospitals,
from other populations
= Drift and attacks, ...

All pictures

Target distribution: radiology images for
lung cancer

Training and test data
from one hospital

See discussion in D'Amour, Alexander, et al. "Underspecification presents challenges for credibility
in modern machine learning." arXiv preprint arXiv:2011.03395 (2020).

https://arxiv.org/abs/2011.03395

Hypothesis: Capabilities may help

e Capabilities are "partial specifications", given
beyond training data
e Encode domain knowledge of the problem
= Capabilities are inherently domain specific
= Curate capability-specific test data for a
problem
e Testing for capabilities helps to distinguish
models that use intended abstractions
¢ May help find models that generalize better

0000
C_ o000

(a) A two-dimensional dataset that requires a complex
decision boundary to achieve high accuracy.

O O @ @ @ @

(b) If the same data distribution is instead sampled with
systematic gaps (e.g., due to annotator bias), a simple
decision boundary can perform well on i.i.d. test data
(shown outlined in pink).

o O @ ® o
@
O @ @90 @ ©

oee
Booo

(c) Since filling in all gaps in the distribution is infeasi-
ble, a contrast set instead fills in a local ball around a
test instance to evaluate the model’s decision boundary.

On Terminology

ML components
e No consistent terminology
m "Testing capabilities" in checklist paper
= "Stress testing" in some others (but stress testing has a very
different meaning in software testing: robustness to overload)
o Software engineering concepts translate, but names not adopted in
ML community
m specification-based testing, black-box testing
m equivalence class testing, boundary-value analysis

Testing Invariants with
Unlabeled Data

(random testing, if it wasn't for that darn oracle problem)

Randomly Generating "Realistic” Inputs is
Possible

volid testNextDate() {
nextDate(2010, 8, 20)
nextDate(2024, 7, 15)
nextDate (2011, 10, 27)
nextDate (2024, 5, 4)
nextDate(2013, 8, 27)
nextDate (2010, 2, 30)

But how do we know whether the computation is correct?

Automated Model Validation Data
Generation?

void testCancerPrediction() {
cancerModel.predict(generateRandomImage())

cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())

}

e But how do we get labels?

The Oracle Problem

How do we know the expected output of a test?

assertkEquals(??, factorPrime(15485863));

Manually constructing outputs

vold testNextDate() {
assert nextDate(2010, 8, 20) == (2010, 8, 21);
assert nextDate(2024, 7, 15) == (2024, 7, 16);
assert nextDate(2010, 2, 30) throws InvalidInputException;

}

vold testCancerPrediction() {
assert cancerModel.predict(loadImage()) == true;
assert cancerModel.predict(loadImage()) == true;
assert cancerModel.predict(loadImage()) == false;

}

(tedious, labor intensive; possibly crowd sourced)

Compare against reference implementation

assuming we have a correct implementation

vold testNextDate() {
assert nextDate(2010, 8, 20) == referenceLib.nextDate (2010, 8, 20);
assert nextDate(2024, 7, 15) == referencelLib.nextDate(2024, 7, 15);
assert nextDate(2010, 2, 30) == referencelLib.nextDate(2010, 2, 30)

}

void testCancerPrediction() {
assert cancerModel.predict(loadImage(

}

(usually no reference implementation for ML problems)

Checking global specifications

Ensure, no computation crashes

void testNextDate() {
nextDate (2010, 8, 20)
nextDate(2024, 7, 15)

}

void testCancerPrediction() {
cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())

}

(we usually do fear crashing bugs in ML models)

Invariants as partial specification

class Stack {
int size = 0;
int MAX_SIZE = 100;
String[] data = new String[MAX_SIZE];

private void check() {
assert(size>=0 && size<=MAX_SIZE);
¥
public void push(String v) {
check();
if (size<MAX_SIZE)
data[+size] = v;
check();

¥
public void pop(String v) { check();

Invariants in Machine Learned Models?

Invariants in Machine Learned Models
(Metamorphic Testing)

Exploit relationships between inputs

o |f two inputs differ only in X -> output should be the same

o |f inputs differ in Y output should be flipped

e |f inputs differ only in feature F, prediction for input with higher F
should be higher

Metamorphic Testing, more formally

Formal description of relationships among inputs and outputs
(Metamorphic Relations)

In general, for a model f and inputs x define two functions to
transform inputs and outputs gy and gp such that:

ve. f(g1(z)) = go(f(2))

7 3o 7 0 3

e.g. gr(x) = replace(x,” is”,” isnot ”) and gp(x) = —x

Some Capabilities are Invariants

Some capability tests can be expressed as invariants and
automatically encoded as transformations to existing test data

e Negation should flip sentiment analysis result
e Typos should not affect sentiment analysis result
e Changes to locations or names should not affect sentiment analysis results

INV: Add randomly generated @JetBlue that selfie was extreme. @pi9QDK INV

9.6 134 248 114 74

Robust URLs and handles to tweets ’ "" (@united stuck because staff took a break? Not happy 1K.... https://t.co/PWKI1jb INV
INV: Swap one character with @JetBlue » @JeBtlue I cri INV
its neighbor (typo) 5.6 102 104 52 38 @SouthwestAir no thanks » thakns INV
INV: Switching locations 70 208 148 7.6 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV
should not change predictions ' ' ' ' " @VirginAmerica [miss the #nerdbird in San Jose + Denver INV

NER

...Airport agents were horrendous. Sharon -+ Erin was your saviour INV
@united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

INV: Switching person names
should not change predictions

24 151 91 6.6 24

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:

= Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://www.cs.cmu.edu/~sherryw/assets/pubs/2020-checklist.pdf

Some Capabilities are Invariants

e For those that output should change: in ML we calculate the prediction
probability
= Add negation to positive sentences should decrease the probability of model
predicting it to be a positive sentence

-
-—

@ Virgin should I be concerned that » when I'm about to fly ... INV
@united the + our nightmare continues... INV

INV: Replace neutral words
with other neutral words

DIR: Add positive phrases, fails
if sent. goes down by > 0.1

DIR: Add negative phrases,
fails if sent. goes up by > 0.1

94 162 124 10.2 10.2

@SouthwestAir Great trip on 2672 yesterday... You are extraordinary. 1
@ AmericanAir AA45 ... JFK to LAS. You are brilliant. 1

@USAirways your service sucks. You are lame. |

@]JetBlue all day. I abhor you. |

126 124 14 02 10.2

08 346 50 00 132

_ From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:
— Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://www.cs.cmu.edu/~sherryw/assets/pubs/2020-checklist.pdf

Examples of Invariants

e Credit rating should not depend on gender:
» Vz. f(z|gender < male|) = f(x|gender < female])
e Synonyms should not change the sentiment of text:
» V. f(x) = f(replace(z,”is not”, ”isn’t”))
e Negation should swap meaning:
» Ve € "X is Y. f(z) =1 — f(replace(z,” is”,” is not "))
e Robustness around training data:
» Vo € training data. Vy € mutate(z, d). f(z) = f(y)
e Low credit scores should never get a loan (sufficient conditions for classification, "anchors"):

» Vz. x. score < 649 = — f(x)
e |dentifying invariants requires domain knowledge of the problem!

o Powerful, if we have this we have automatic test in production

On Testing with Invariants/Assertions

e Defining good metamorphic relations requires knowledge of the
problem domain

e Good metamorphic relations focus on parts of the system

e |nvariants usually cover only one aspect of correctness -- maybe
capabilities

e |nvariants and near-invariants can be mined automatically from
sample data (see specification mining and anchors)

Further reading:

e Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "A survey on
metamorphic testing." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.

e Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Anchors: High-precision model-
agnostic explanations." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

https://core.ac.uk/download/pdf/74235918.pdf
https://sameersingh.org/files/papers/anchors-aaai18.pdf

Approaches for Checking Invariants

e Generating test data (random, distributions) usually easy

e Transformations of existing test data

o Adversarial learning: For many techniques gradient-based
techniques to search for invariant violations -- that's roughly
analogous to symbolic execution in SE

e Early work on formally verifying invariants for certain models (e.g.,
small deep neural networks)

Further readings: Singh, Gagandeep, Timon Gehr, Markus Plschel, and Martin Vechev. "An abstract
domain for certifying neural networks." Proceedings of the ACM on Programming Languages 3, no.
— POPL (2019): 1-30.

https://dl.acm.org/doi/pdf/10.1145/3290354

Simulation-Based Testing

One More Thing: Simulation-Based Testing
In some cases it is easy to go from outputs to inputs:

assertkEquals(??, factorPrime(15485862));

randomNumbers = [2, 3, 7, 7, 52673]
asserteEquals(randomNumbers,
factorPrime(multiply(randomNumbers)));

Similar idea in machine-learning problems?

One More Thing: Simulation-Based Testing

e Derive input-output pairs from simulation,
esp. in vision systems Simulation
e Example: Vision for self-driving cars:
= Render scene -> add noise -> recognize ->
compare recognized result with simulator
state
e Quality depends on quality of simulator:
= examples: render picture/video, Prediction
synthesize speech, ...
= | ess suitable where input-output

relationship unknown, e.g., cancer
prognosis, housing price prediction

Further readings: Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
— "DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous
~ driving systems." In Proc. ASE. 2018.

Preliminary Summary: Invariants and
Generation

e Generating sample inputs is easy, but knowing corresponding
outputs is not (oracle problem)

e Crashing bugs are not a concern

e |Invariants + generated data can check capabilities or properties
(metamorphic testing)

= |nputs can
(adversaria
o |f inputs can

e generated realistically or to find violations
learning)

e computed from outputs, tests can be automated

(simulation-based testing)

On Terminology

S

Metamorphic testing is an academic software engineering term that's
not common in ML literature, it generalizes many concepts regularly
reinvented

Much of the security, safety and robustness literature in ML focuses
on invariants

Property-based Testing

How to Test Models for Generation Task?

e So far most of model testing techniques we discuss expect a
"ground-truth" output.

e But what about "Generative Al", where no single ground-truth is
available?
s E.g.,an LLM-based quiz maker

"Your goal is to create a well crafted set of four concise answers for a
test for a specific question.”

Property-based Testing

Instead of writing unit tests, we can test properties a function should
satisfy.

def test_gcd():
assert 1 == gcd
assert 5 == gcd
assert 3 == gcd

test_gcd(n, m):
d = gcd(n, m)

assert d > 0
assert n % d == 0

Property-based Testing For Models

"Your goal is to create a well crafted set of four concise answers for a
test for a specific question.”

e There are only four answers

e Each generated answer should contain <15 words

e All answers should be relevant to the question

e All answers should be covered in the course material (provided as
context)

Some properties are easier to test with programs, but how to test
"vaguer" properties?

Testing Properties with LLMs

How to test "vaguer" properties? Use LLM as a judge!

e All answers should be relevant to the question
= "|s the answer relevant to the question? Answer yes or no."

Need to make sure LLM judgments align with human judgments --
This is a common pitfall for practitioners.

Zheng, Lianmin, et al. "Judging lIm-as-a-judge with mt-bench and

chatbot arena." Advances in Neural Information Processing Systems
36 (2023): 46595-46623.

Breakout Discussion

Write a few (n>=3) property-based tests for the following prompt:

"Your task is to analyze project handouts. Summarize the handouts in a concise and clear manner,
identifying key project goals, milestones, and risks. Output your findings as a short memo | can send
to my team. The goal of the memo is to ensure my team stays aligned on the project’s objectives,
timelines, and deliverables while also identifying potential bottlenecks or challenges that could
impact progress. Make sure to include all relevant details in your summary and analysis."

As a group, discuss what property-based tests you would write and how you would execute them.

Post answer to #lecture tagging group members in Slack using template:

Property Test: ...
Test method: ...
Test prompt / program: ...

Speaker notes

Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on implementation

Will not randomly sample from distribution of all days

Audits and Red Teaming

Example: Adversarial Nibbler

file:///home/runner/work/s2025/s2025/lectures/_static/07_modeltesting/redteam_nibbler.png

Audits and Red Teaming

Example: Adversarial Nibbler,
Google's crowdsourcing effort
(framed as a "data-centric Al
competition") to collect ptompyd
that are likely to cause a
generative text-to-image model
to fail in an unsafe manner.

Innocuous text that
contains either a
bversive

. “child sleeping in probing / attack
puddle of red paint”

Prompt looks Safe but
model response is

Unsafe*

https://www.dataperf.org/adversarial-nibbler

Other Testing Concepts

Test Coverage

int divide(int A, int B) {
1f (A==0)
return 0;

return -1;
return A / B;

}

minimum set of test cases to cover all lines? all decisions? all path?

Defining Structural Testing ("white box")

e Test case creation is driven by the implementation, not the
specification

e Typically aiming to increase coverage of lines, decisions, etc

o Automated test generation often driven by maximizing coverage
(for finding crashing bugs)

Whitebox Analysis in ML

e Several coverage metrics have been proposed
= All path of a decision tree?
= All neurons activated at least once in a DNN? (several papers
"neuron coverage")
m |inear regression models??
e Often create artificial inputs, not realistic for distribution
e Unclear whether those are useful
e Adversarial learning techniques usually more efficient at finding
invariant violations

Regression Testing

e Whenever bug detected and fixed, add a test case
e Make sure the bug is not reintroduced later
o Execute test suite after changes to detect regressions
» |deally automatically with continuous integration tools

e Maps well to curating test sets for important populations in ML

Continuous Integration

Continuous Integration for Model Quality?

Continuous Integration for Model Quality

e Testing script
m Existing model: Automatically evaluate model on labeled training set;
multiple separate evaluation sets possible, e.g., for slicing, regressions
= Training model: Automatically train and evaluate model, possibly using cross-
validation; many ML libraries provide built-in support
m Report accuracy, recall, etc. in console output or log files
= May deploy learning and evaluation tasks to cloud services
= Optionally: Fail test below bound (e.g., accuracy <.9; accuracy < last accuracy)
e Version control test data, model and test scripts, ideally also learning data and
learning code (feature extraction, modeling, ...)
e Continuous integration tool can trigger test script and parse output, plot for
comparisons (e.g., similar to performance tests)
e Optionally: Continuous deployment to production server

Summary

Curating test data

e Analyzing specifications, capabilities

e Not all inputs are equal: Identify important inputs (inspiration from
specification-based testing)

e Slice data for evaluation

e |dentifying capabilities and generating relevant tests

Automated random testing

e Feasible with invariants (e.g. metamorphic relations)
e Sometimes possible with simulation

Automate the test execution with continuous integration

Further readings

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Semantically equivalent adversarial
rules for debugging NLP models." In Proc. ACL, pp. 856-865. 2018.

Barash, Guy, Eitan Farchi, llan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel Zalmanovici.
"Bridging the gap between ML solutions and their business requirements using feature
interactions." In Proc. FSE, pp. 1048-1058. 2019.

Ashmore, Rob, Radu Calinescu, and Colin Paterson. "Assuring the machine learning lifecycle:
Desiderata, methods, and challenges." arXiv preprint arXiv:1905.04223. 2019.

Christian Kaestner. Rediscovering Unit Testing: Testing Capabilities of ML Models. Toward Data
Science, 2021.

D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen et al. "Underspecification presents challenges for credibility in modern machine
learning." arXiv preprint arXiv:2011.03395 (2020).

Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "A survey on
metamorphic testing." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.

https://www.aclweb.org/anthology/P18-1079.pdf
https://dl.acm.org/doi/abs/10.1145/3338906.3340442
https://arxiv.org/abs/1905.04223
https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81
https://arxiv.org/abs/2011.03395
https://core.ac.uk/download/pdf/74235918.pdf

Machine Learning in Production/Al Engineering e Sherry Wu & Christian Kaestner, Carnegie Mellon University e Fall 2024

