
Machine Learning in ProductionMachine Learning in Production

Model Testing beyondModel Testing beyond
AccuracyAccuracy
(Slicing, Capabilities, Invariants, Simulation, ...)(Slicing, Capabilities, Invariants, Simulation, ...)

1


More model-level QA...

2


Learning Goals
Curate validation datasets for assessing model quality, covering
subpopulations and capabilities as needed
Explain the oracle problem and how it challenges testing of
software and models
Use invariants to check partial model properties with automated
testing
Select and deploy automated infrastructure to evaluate and
monitor model quality

3


Model Quality
First Part: Measuring Prediction Accuracy (Done)

the data scientist's perspective

Second Part: What is Correctness Anyway? (Today)
the role and lack of specifications, validation vs verification

Third Part: Learning from Software Testing (Today)
unit testing, test case curation, invariants, simulation

Later: Testing in Production
monitoring, A/B testing, canary releases (in 2 weeks)

4


, cc-by-nc 2.5 Randall MunroeXKCD 1838
5



https://xkcd.com/1838/

Curating Validation Data &
Input Slicing

6


Breakout Discussion
Write a few tests for the following program:

A test may look like:

As a group, discuss how you select tests. Discuss how many tests you need to feel confident.

Post answer to #lecture tagging group members in Slack using template:

def nextDate(year: Int, month: Int, day: Int) = ...

assert nextDate(2021, 2, 8) == (2021, 2, 9);

Selection strategy: ...
Test quantity: ...

7




Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on implementation

Will not randomly sample from distribution of all days

Speaker notes

The V-Model

8


Software Test Case Design
Opportunistic/exploratory testing: Add some unit tests, without much planning

Specification-based testing ("black box"): Derive test cases from specifications
Boundary value analysis
Equivalence classes
Combinatorial testing
Random testing

Structural testing ("white box"): Derive test cases to cover implementation paths
Line coverage, branch coverage
Control-flow, data-flow testing, MCDC, ...

Test execution usually automated, but can be manual too; automated generation
from specifications or code possible

9


Example: Boundary Value Testing
Analyze the specification, not the implementation!

Key Insight: Errors often occur at the boundaries of a variable value

For each variable select (1) minimum, (2) min+1, (3) medium, (4) max-
1, and (5) maximum; possibly also invalid values min-1, max+1

Example: nextDate(2015, 6, 13) = (2015, 6, 14)
Boundaries?

10


Example: Equivalence classes
Idea: Typically many values behave similarly, but some groups of
values are different

Equivalence classes derived from specifications (e.g., cases, input
ranges, error conditions, fault models)

Example nextDate(2015, 6, 13)
leap years, month with 28/30/31 days, days 1-28, 29, 30, 31

Pick 1 value from each group, combine groups from all variables

11


Exercise

suggest test cases based on boundary value analysis and equivalence
class testing

/** Compute the price of a bus ride:
 * - Children under 2 ride for free, children under 18 and
 * senior citizen over 65 pay half, all others pay the
 * full fare of $3.
 * - On weekdays, between 7am and 9am and between 4pm and
 * 7pm a peak surcharge of $1.5 is added.
 * - Short trips under 5min during off-peak time are free.*/
def busTicketPrice(age: Int,
 datetime: LocalDateTime,
 rideTime: Int)

12


Selecting Validation Data for Model
Quality?

Validation data should reflect usage data
Be aware of data drift (face recognition during pandemic, new
patterns in credit card fraud detection)
"Out of distribution" predictions often low quality (it may even be
worth to detect out of distribution data in production, more later)

(note, similar to requirements validation: did we hear all/representative
stakeholders)

13


Not All Inputs are Equal: Frequent Cases

"Call mom" "What's the weather tomorrow?" "Add asafetida to my
shopping list"

14


Not All Inputs are Equal: Edge Cases

15


Not All Inputs are Equal

A system to detect when somebody is at the door that never works
for people under 5ft (1.52m)
A spam filter that deletes alerts from banks
Technology from Amazon, Apple, Google, IBM and Microsoft
misidentified 35 percent of words from people who were black.
White people fared much better. --

some random mistakes vs rare but biased mistakes?

NYTimes March 2020

16


https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html

How do you identify Important Inputs?
(We already hinted so...)

17


Identify Important Inputs
Curate Validation Data for Specific Problems and Subpopulations:

Important inputs ("call mom") -- expect very high accuracy
closest equivalent to unit tests

Different subpopulations (e.g., accents) -- expect comparable accuracy
Challenging cases or stretch goals -- accept lower accuracy

Derive from requirements, experts, user feedback, expected problems
etc. Think specification-based testing.

18


Access to Important Inputs: Partitioning
Guide testing by identifying groups and analyzing accuracy of
subgroups

Often for fairness: gender, country, age groups, ...
Possibly based on business requirements or cost of mistakes

Slice test data by population criteria, also evaluate interactions
Identifies problems and plan mitigations, e.g., enhance with more
data for subgroup or reduce confidence

Good reading: Barash, Guy, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel
Zalmanovici. "Bridging the gap between ML solutions and their business requirements using feature

19


Input Partitioning Example
Slice and hypothesis on model's cat recognition behavior

Source: Johnson, Nari, et al. "Where Does My Model Underperform? A Human Evaluation of Slice
Discovery Algorithms." In HCOMP 2023

20


Input Partitioning Example
Multiple slices on image recognition, and model comparison

21


Example: Model Impr. at Apple (Overton)

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "
." arXiv preprint arXiv:1909.05372 (2019).

Overton: A Data System
for Monitoring and Improving Machine-Learned Products

22


https://arxiv.org/abs/1909.05372

Example: Model Impr. at Apple (Overton)
Focus engineers on creating training and validation data, not on
model search (AutoML)
Flexible infrastructure to slice telemetry data to identify
underperforming subpopulations -> focus on creating better
training data (better, more labels, in semi-supervised learning
setting)

23


Input Partitioning Discussion
How to slice evaluation data for cancer prognosis?

24


Behavioral Testing
(Capabilities)

Further reading: Christian Kaestner. .
Toward Data Science, 2021.

Rediscovering Unit Testing: Testing Capabilities of ML Models

25


https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81

Testing Capabilities
Core idea: Define "capabilities" that the model should grasp in order
to do a test well, and create targeted test cases for those capabilities.

Where do capabilities come from?

Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "
." In Proceedings ACL, p. 4902–4912. (2020).

Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList

26


https://www.cs.cmu.edu/~sherryw/assets/pubs/2020-checklist.pdf

Capabilities and where they come from
In the paper we listed a bunch of
standard, "shared" capabilities across
NLP tasks -- e.g. whatever model it is, it
should be able to handle negation,
synonyms, etc., just that the model
should react in different ways.

Should be more use-case specific and
from domain knowledge!

27


Strategies for identifying capabilities
Analyze common mistakes (e.g., classify past mistakes in cancer
prognosis)
Use existing knowledge about the problem (e.g., linguistics
theories)
Observe humans (e.g., how do radiologists look for cancer)
Derive from requirements (e.g., fairness)
Causal discovery from observational data?

28


Testing Capabilities

29


Examples of Capabilities
What could be capabilities of the cancer classifier?

30


Capabilities vs Specifications vs Slicing
Capabilities are partial specifications of expected behavior (not
expected to always hold)

Some capabilities correspond to slices of existing test data, for others
we may need to create new data

31


Generating Test Data for Capabilities
Idea 1: Domain-specific generators

Testing negation in sentiment analysis with template:
I {NEGATION} {POS_VERB} the {THING}.

Testing texture vs shape priority with artificial generated images:

32


Generating Test Data for Capabilities
Idea 2: Mutating existing inputs

Testing synonyms in sentiment analysis by replacing words with
synonyms, keeping label
Testing robust against noise and distraction add and false is
not true or random URLs to text

33


Generating Test Data for Capabilities
Idea 3: Crowd-sourcing test creation

Testing sarcasm in sentiment analysis: Ask humans to minimally
change text to flip sentiment with sarcasm
Testing background in object detection: Ask humans to take
pictures of specific objects with unusual backgrounds

34


Generating Test Data for Capabilities
Idea 4: Slicing test data

Testing negation in sentiment analysis by finding sentences containing
'not'

35


Generating Test Data for Capabilities
Idea 5: Directly synthesize data using LLMs

This can give you "pseudo" labeled data for tasks/capabilities largest
models are known to have. Known as "distillation"

Yu, Yue, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J. Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. "Large language model as attributed training data generator: A tale of diversity
and bias." Advances in Neural Information Processing Systems 36 (2024).

36


Generating Test Data for Capabilities
How to generate test data for capabilities of the cancer classifier?

37


Testing vs Training Capabilities
Dual insight for testing and training
Strategies for curating test data can also help select training data
Generate capability-specific training data to guide training (data
augmentation)

Further reading on using domain knowledge during training: Von Rueden, Laura, Sebastian Mayer,
Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. "Informed machine learning–towards a
taxonomy of explicit integration of knowledge into machine learning." Learning 18 (2019): 19-20. 38



Why Augmentation: Generalization beyond
Training Distribution?

Typically training and validation data from
same distribution (i.i.d. assumption!)
Many models can achieve similar accuracy
Models that learn "right" abstractions
possibly indistinguishable from models that
use shortcuts
Some models generalize better to other
distributions not used in training

e.g., cancer images from other hospitals,
from other populations
Drift and attacks, ...

See discussion in D'Amour, Alexander, et al. "
." arXiv preprint arXiv:2011.03395 (2020).

Underspecification presents challenges for credibility
in modern machine learning

39


https://arxiv.org/abs/2011.03395

Hypothesis: Capabilities may help
Capabilities are "partial specifications", given
beyond training data
Encode domain knowledge of the problem

Capabilities are inherently domain specific
Curate capability-specific test data for a
problem

Testing for capabilities helps to distinguish
models that use intended abstractions
May help find models that generalize better

40


On Terminology
Test data curation is emerging as a very recent concept for testing
ML components
No consistent terminology

"Testing capabilities" in checklist paper
"Stress testing" in some others (but stress testing has a very
different meaning in software testing: robustness to overload)

Software engineering concepts translate, but names not adopted in
ML community

specification-based testing, black-box testing
equivalence class testing, boundary-value analysis

41


Testing Invariants with
Unlabeled Data
(random testing, if it wasn't for that darn oracle problem)

42


Randomly Generating "Realistic" Inputs is
Possible

But how do we know whether the computation is correct?

@Test
void testNextDate() {
 nextDate(2010, 8, 20)
 nextDate(2024, 7, 15)
 nextDate(2011, 10, 27)
 nextDate(2024, 5, 4)
 nextDate(2013, 8, 27)
 nextDate(2010, 2, 30)
}

43


Automated Model Validation Data
Generation?

But how do we get labels?

@Test
void testCancerPrediction() {
 cancerModel.predict(generateRandomImage())
 cancerModel.predict(generateRandomImage())
 cancerModel.predict(generateRandomImage())
}

44


The Oracle Problem
How do we know the expected output of a test?

assertEquals(??, factorPrime(15485863));

45


Manually constructing outputs

(tedious, labor intensive; possibly crowd sourced)

@Test
void testNextDate() {
 assert nextDate(2010, 8, 20) == (2010, 8, 21);
 assert nextDate(2024, 7, 15) == (2024, 7, 16);
 assert nextDate(2010, 2, 30) throws InvalidInputException;
}

@Test
void testCancerPrediction() {
 assert cancerModel.predict(loadImage("random1.jpg")) == true;
 assert cancerModel.predict(loadImage("random2.jpg")) == true;
 assert cancerModel.predict(loadImage("random3.jpg")) == false;
}

46


Compare against reference implementation
assuming we have a correct implementation

(usually no reference implementation for ML problems)

@Test
void testNextDate() {
 assert nextDate(2010, 8, 20) == referenceLib.nextDate(2010, 8, 20);
 assert nextDate(2024, 7, 15) == referenceLib.nextDate(2024, 7, 15);
 assert nextDate(2010, 2, 30) == referenceLib.nextDate(2010, 2, 30)
}

@Test
void testCancerPrediction() {
 assert cancerModel.predict(loadImage("random1.jpg")) == ???;
}

47


Checking global specifications
Ensure, no computation crashes

(we usually do fear crashing bugs in ML models)

@Test
void testNextDate() {
 nextDate(2010, 8, 20)
 nextDate(2024, 7, 15)
}

@Test
void testCancerPrediction() {
 cancerModel.predict(generateRandomImage())
 cancerModel.predict(generateRandomImage())
}

48


Invariants as partial specification
class Stack {
 int size = 0;
 int MAX_SIZE = 100;
 String[] data = new String[MAX_SIZE];
 // class invariant checked before and after every method
 private void check() {
 assert(size>=0 && size<=MAX_SIZE);
 }
 public void push(String v) {
 check();
 if (size<MAX_SIZE)
 data[+size] = v;
 check();
 }
 public void pop(String v) { check(); ... }

49


Invariants in Machine Learned Models?

50


Invariants in Machine Learned Models
(Metamorphic Testing)
Exploit relationships between inputs

If two inputs differ only in X -> output should be the same
If inputs differ in Y output should be flipped
If inputs differ only in feature F, prediction for input with higher F
should be higher
...

51


Metamorphic Testing, more formally
Formal description of relationships among inputs and outputs
(Metamorphic Relations)

In general, for a model and inputs define two functions to
transform inputs and outputs and such that:

e.g. and

f x
gI gO

∀x. f((x)) = (f(x))gI gO

(x) = replace(x, " is ", " is not ")gI (x) = ¬xgO

52


Some Capabilities are Invariants
Some capability tests can be expressed as invariants and
automatically encoded as transformations to existing test data

Negation should flip sentiment analysis result
Typos should not affect sentiment analysis result
Changes to locations or names should not affect sentiment analysis results

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "
." In Proceedings ACL, p. 4902–4912. (2020).

Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList

53


https://www.cs.cmu.edu/~sherryw/assets/pubs/2020-checklist.pdf

Some Capabilities are Invariants
For those that output should change: in ML we calculate the prediction
probability

Add negation to positive sentences should decrease the probability of model
predicting it to be a positive sentence

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "
." In Proceedings ACL, p. 4902–4912. (2020).

Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList 54



https://www.cs.cmu.edu/~sherryw/assets/pubs/2020-checklist.pdf

Examples of Invariants
Credit rating should not depend on gender:

Synonyms should not change the sentiment of text:

Negation should swap meaning:

Robustness around training data:

Low credit scores should never get a loan (sufficient conditions for classification, "anchors"):

Identifying invariants requires domain knowledge of the problem!
Powerful, if we have this we have automatic test in production

∀x. f(x[gender ← male]) = f(x[gender ← female])

∀x. f(x) = f(replace(x, "is not", "isn't"))

∀x ∈ "X is Y". f(x) = 1 − f(replace(x, " is ", " is not "))

∀x ∈ training data. ∀y ∈ mutate(x, δ). f(x) = f(y)

∀x. x. score < 649 ⇒ ¬f(x)

55


On Testing with Invariants/Assertions
Defining good metamorphic relations requires knowledge of the
problem domain
Good metamorphic relations focus on parts of the system
Invariants usually cover only one aspect of correctness -- maybe
capabilities
Invariants and near-invariants can be mined automatically from
sample data (see specification mining and anchors)

Further reading:
Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "

." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "

." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

A survey on
metamorphic testing

Anchors: High-precision model-
agnostic explanations

56


https://core.ac.uk/download/pdf/74235918.pdf
https://sameersingh.org/files/papers/anchors-aaai18.pdf

Approaches for Checking Invariants
Generating test data (random, distributions) usually easy
Transformations of existing test data
Adversarial learning: For many techniques gradient-based
techniques to search for invariant violations -- that's roughly
analogous to symbolic execution in SE
Early work on formally verifying invariants for certain models (e.g.,
small deep neural networks)

Further readings: Singh, Gagandeep, Timon Gehr, Markus Püschel, and Martin Vechev. "
." Proceedings of the ACM on Programming Languages 3, no.

POPL (2019): 1-30.

An abstract
domain for certifying neural networks

57


https://dl.acm.org/doi/pdf/10.1145/3290354

Simulation-Based Testing

58


One More Thing: Simulation-Based Testing
In some cases it is easy to go from outputs to inputs:

Similar idea in machine-learning problems?

assertEquals(??, factorPrime(15485862));

randomNumbers = [2, 3, 7, 7, 52673]
assertEquals(randomNumbers,
 factorPrime(multiply(randomNumbers)));

59


One More Thing: Simulation-Based Testing
Derive input-output pairs from simulation,
esp. in vision systems
Example: Vision for self-driving cars:

Render scene -> add noise -> recognize ->
compare recognized result with simulator
state

Quality depends on quality of simulator:
examples: render picture/video,
synthesize speech, ...
Less suitable where input-output
relationship unknown, e.g., cancer
prognosis, housing price prediction

Further readings: Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
"DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous
driving systems." In Proc. ASE. 2018. 60



Preliminary Summary: Invariants and
Generation

Generating sample inputs is easy, but knowing corresponding
outputs is not (oracle problem)
Crashing bugs are not a concern
Invariants + generated data can check capabilities or properties
(metamorphic testing)

Inputs can be generated realistically or to find violations
(adversarial learning)

If inputs can be computed from outputs, tests can be automated
(simulation-based testing)

61


On Terminology
Metamorphic testing is an academic software engineering term that's
not common in ML literature, it generalizes many concepts regularly
reinvented

Much of the security, safety and robustness literature in ML focuses
on invariants

62


Property-based Testing

63


How to Test Models for Generation Task?
So far most of model testing techniques we discuss expect a
"ground-truth" output.
But what about "Generative AI", where no single ground-truth is
available?

E.g., an LLM-based quiz maker

"Your goal is to create a well crafted set of four concise answers for a
test for a specific question."

64


Property-based Testing
Instead of writing unit tests, we can test properties a function should
satisfy.

def test_gcd(): # greatest common divisor
 assert 1 == gcd(15, 7)
 assert 5 == gcd(15, 5)
 assert 3 == gcd(-9, 15)

def test_gcd(n, m):
 d = gcd(n, m)

 assert d > 0 # 1) `d` is positive
 assert n % d == 0 # 2) `d` divides `n`

65


Property-based Testing For Models
"Your goal is to create a well crafted set of four concise answers for a
test for a specific question."

There are only four answers
Each generated answer should contain <15 words
All answers should be relevant to the question
All answers should be covered in the course material (provided as
context)

Some properties are easier to test with programs, but how to test
"vaguer" properties?

66


Testing Properties with LLMs
How to test "vaguer" properties? Use LLM as a judge!

All answers should be relevant to the question
"Is the answer relevant to the question? Answer yes or no."

Need to make sure LLM judgments align with human judgments --
This is a common pitfall for practitioners.

Zheng, Lianmin, et al. "Judging llm-as-a-judge with mt-bench and
chatbot arena." Advances in Neural Information Processing Systems
36 (2023): 46595-46623.

67


Breakout Discussion
Write a few (n>=3) property-based tests for the following prompt:

"Your task is to analyze project handouts. Summarize the handouts in a concise and clear manner,
identifying key project goals, milestones, and risks. Output your findings as a short memo I can send
to my team. The goal of the memo is to ensure my team stays aligned on the project’s objectives,
timelines, and deliverables while also identifying potential bottlenecks or challenges that could
impact progress. Make sure to include all relevant details in your summary and analysis."

As a group, discuss what property-based tests you would write and how you would execute them.

Post answer to #lecture tagging group members in Slack using template:

Property Test: ...
Test method: ...
Test prompt / program: ...

68




Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on implementation

Will not randomly sample from distribution of all days

Speaker notes

Audits and Red Teaming

Example: Adversarial Nibbler

69


file:///home/runner/work/s2025/s2025/lectures/_static/07_modeltesting/redteam_nibbler.png

Audits and Red Teaming
Example: ,
Google's crowdsourcing effort
(framed as a "data-centric AI
competition") to collect ptompyd
that are likely to cause a
generative text-to-image model
to fail in an unsafe manner.

Adversarial Nibbler

70


https://www.dataperf.org/adversarial-nibbler

Other Testing Concepts

71


Test Coverage

minimum set of test cases to cover all lines? all decisions? all path?

int divide(int A, int B) {
 if (A==0)
 return 0;
 if (B==0)
 return -1;
 return A / B;
}

72


Defining Structural Testing ("white box")
Test case creation is driven by the implementation, not the
specification
Typically aiming to increase coverage of lines, decisions, etc
Automated test generation often driven by maximizing coverage
(for finding crashing bugs)

73


Whitebox Analysis in ML
Several coverage metrics have been proposed

All path of a decision tree?
All neurons activated at least once in a DNN? (several papers
"neuron coverage")
Linear regression models??

Often create artificial inputs, not realistic for distribution
Unclear whether those are useful
Adversarial learning techniques usually more efficient at finding
invariant violations

74


Regression Testing
Whenever bug detected and fixed, add a test case
Make sure the bug is not reintroduced later
Execute test suite after changes to detect regressions

Ideally automatically with continuous integration tools

Maps well to curating test sets for important populations in ML

75


Continuous Integration

76


Continuous Integration for Model Quality?

77


Continuous Integration for Model Quality
Testing script

Existing model: Automatically evaluate model on labeled training set;
multiple separate evaluation sets possible, e.g., for slicing, regressions
Training model: Automatically train and evaluate model, possibly using cross-
validation; many ML libraries provide built-in support
Report accuracy, recall, etc. in console output or log files
May deploy learning and evaluation tasks to cloud services
Optionally: Fail test below bound (e.g., accuracy <.9; accuracy < last accuracy)

Version control test data, model and test scripts, ideally also learning data and
learning code (feature extraction, modeling, ...)
Continuous integration tool can trigger test script and parse output, plot for
comparisons (e.g., similar to performance tests)
Optionally: Continuous deployment to production server

78


Summary
Curating test data

Analyzing specifications, capabilities
Not all inputs are equal: Identify important inputs (inspiration from
specification-based testing)
Slice data for evaluation
Identifying capabilities and generating relevant tests

Automated random testing
Feasible with invariants (e.g. metamorphic relations)
Sometimes possible with simulation

Automate the test execution with continuous integration
79



Further readings
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "

." In Proc. ACL, pp. 856-865. 2018.
Barash, Guy, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel Zalmanovici.
"

." In Proc. FSE, pp. 1048-1058. 2019.
Ashmore, Rob, Radu Calinescu, and Colin Paterson. "

." arXiv preprint arXiv:1905.04223. 2019.
Christian Kaestner. . Toward Data
Science, 2021.
D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen et al. "

." arXiv preprint arXiv:2011.03395 (2020).
Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "

." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.

Semantically equivalent adversarial
rules for debugging NLP models

Bridging the gap between ML solutions and their business requirements using feature
interactions

Assuring the machine learning lifecycle:
Desiderata, methods, and challenges

Rediscovering Unit Testing: Testing Capabilities of ML Models

Underspecification presents challenges for credibility in modern machine
learning

A survey on
metamorphic testing

80


https://www.aclweb.org/anthology/P18-1079.pdf
https://dl.acm.org/doi/abs/10.1145/3338906.3340442
https://arxiv.org/abs/1905.04223
https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81
https://arxiv.org/abs/2011.03395
https://core.ac.uk/download/pdf/74235918.pdf

Machine Learning in Production/AI Engineering • Sherry Wu & Christian Kaestner, Carnegie Mellon University • Fall 2024



