
Machine Learning in Produc�onMachine Learning in Produc�on

Automa�ng and Tes�ng MLAutoma�ng and Tes�ng ML
PipelinesPipelines

1

Infrastructure Quality...

2

Readings
Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael
Salib, D. Sculley.

. Proceedings of IEEE Big
Data (2017)

Recommended readings:
O'Leary, Ka�e, and Makoto Uchida. "

." Proc.
Conference on Machine Learning and Systems (MLSys) (2020).

The ML Test Score: A Rubric for ML Produc�on
Readiness and Technical Debt Reduc�on

Common problems with
Crea�ng Machine Learning Pipelines from Exis�ng Code

3

https://research.google.com/pubs/archive/46555.pdf
https://research.google/pubs/pub48984.pdf

Learning Goals
Decompose an ML pipeline into testable func�ons
Implement and automate tests for all parts of the ML pipeline
Understand tes�ng opportuni�es beyond func�onal correctness
Describe the different tes�ng levels and tes�ng opportuni�es at
each level
Automate test execu�on with con�nuous integra�on

4

ML Pipelines

All steps to create (and deploy) the model

5

Common ML Pipeline

6

Computational notebook

Containing all code, often also dead experimental code

Speaker notes

Notebooks as Produc�on Pipeline?

Parameterize and use nbconvert?
7

https://tanzu.vmware.com/content/blog/how-data-scientists-can-tame-jupyter-notebooks-for-use-in-production-systems

Real Pipelines can be Complex

8

Real Pipelines can be Complex
Large arguments of data

Distributed data storage

Distributed processing and learning

Special hardware needs

Fault tolerance

Humans in the loop

9

Possible Mistakes in ML Pipelines

Danger of "silent" mistakes in many phases

Examples?

10

Possible Mistakes in ML Pipelines
Danger of "silent" mistakes in many phases:

Dropped data a�er format changes
Failure to push updated model into produc�on
Incorrect feature extrac�on
Use of stale dataset, wrong data source
Data source no longer available (e.g web API)
Telemetry server overloaded
Nega�ve feedback (telemtr.) no longer sent from app
Use of old model learning code, stale hyperparameter
Data format changes between ML pipeline steps

11

Pipeline Thinking
A�er explora�on and prototyping build robust pipeline

One-off model crea�on -> repeatable automateable process

Enables updates, supports experimenta�on

Explicit interfaces with other parts of the system (data sources,
labeling infrastructure, training infrastructure, deployment, ...)

Design for change

12

Building Robust Pipeline Automa�on
Support experimenta�on and evolu�on

Automate
Design for change
Design for observability
Tes�ng the pipeline for robustness

Thinking in pipelines, not models
Integra�ng the Pipeline with other Components

13

Pipeline Testability and
Modularity

14

Pipelines are Code
From experimental notebook code to produc�on code

Each stage as a func�on or module

Well tested in isola�on and together

Robust to changes in inputs (automa�cally adapt or crash, no silent
mistakes)

Use good engineering prac�ces (version control, documenta�on,
tes�ng, naming, code review)

15

Sequen�al Data Science Code in
Notebooks

How to test??

typical data science code from a notebook
df = pd.read_csv('data.csv', parse_dates=True)

data cleaning
...

feature engineering
df['month'] = pd.to_datetime(df['datetime']).dt.month
df['dayofweek']= pd.to_datetime(df['datetime']).dt.dayofweek
df['delivery_count'] = boxcox(df['delivery_count'], 0.4)
df.drop(['datetime'], axis=1, inplace=True)

16

Testability can be decomposed into...
Controllability:

Ability to influence system
internal state or behavior by
changing its inputs

Observability
Degree to which you can
determine that the behavior
went as expected.

17

Pipeline restructed into separate func�on
def encode_day_of_week(df):
 if 'datetime' not in df.columns: raise ValueError("Column datetime missing")
 if df.datetime.dtype != 'object': raise ValueError("Invalid type for column datetime")
 df['dayofweek']= pd.to_datetime(df['datetime']).dt.day_name()
 df = pd.get_dummies(df, columns = ['dayofweek'])
 return df

...

def prepare_data(df):
 df = clean_data(df)

18

Orchestra�ng Func�ons

Dataflow frameworks like , , , , and
support distribu�on, fault tolerance, monitoring, ...

Hosted versions like and

def pipeline():
 train = pd.read_csv('train.csv', parse_dates=True)
 test = pd.read_csv('test.csv', parse_dates=True)
 X_train, y_train = prepare_data(train)
 X_test, y_test = prepare_data(test)
 model = learn(X_train, y_train)
 accuracy = eval(model, X_test, y_test)
 return model, accuracy

Luigi DVC Airflow d6�low Ploomber

DataBricks AWS SageMaker Pipelines
19

https://github.com/spotify/luigi
https://dvc.org/
https://airflow.apache.org/
https://github.com/d6t/d6tflow
https://ploomber.io/
https://databricks.com/
https://aws.amazon.com/sagemaker/pipelines/

Test the Modules
def encode_day_of_week(df):
 if 'datetime' not in df.columns: raise ValueError("Column d
 if df.datetime.dtype != 'object': raise ValueError("Invalid
 df['dayofweek']= pd.to_datetime(df['datetime']).dt.day_name
 df = pd.get_dummies(df, columns = ['dayofweek'])
 return df

def test_day_of_week_encoding():
 df = pd.DataFrame({'datetime': ['2020-01-01','2020-01-02','2
 encoded = encode_day_of_week(df)
 assert "dayofweek_Wednesday" in encoded.columns
 assert (encoded["dayofweek_Wednesday"] == [1, 0, 1]).all()

20

Subtle Bugs in Data Wrangling Code
df['Join_year'] = df.Joined.dropna().map(
 lambda x: x.split(',')[1].split(' ')[1])

df.loc[idx_nan_age,'Age'].loc[idx_nan_age] =
 df['Title'].loc[idx_nan_age].map(map_means)

df["Weight"].astype(str).astype(int)

21

1 attempting to remove na values from column, not table, drops the whole data frame

2 loc[] called twice, resulting in assignment to temporary column only, goal was a slice of a slice

3 astype() is not an in-place operation. the intention is probably to change the type but it doesn’t do it in place

Speaker notes

Subtle Bugs in Data Wrangling Code
(con�nued)
df['Reviws'] = df['Reviews'].apply(int)

df["Release Clause"] =
 df["Release Clause"].replace(regex=['k'], value='000')
df["Release Clause"] =
 df["Release Clause"].astype(str).astype(float)

22

1 attempting to remove na values from column, not table

2 loc[] called twice, resulting in assignment to temporary column only

3 astype() is not an in-place operation

4 typo in column name

5&6 modeling problem (k vs K)

Speaker notes

Modularity fosters Testability
Breaking code into func�ons/modules

Supports reuse, separate development, and tes�ng

Can test individual parts

23

Tes�ng Maturity

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

24

https://research.google.com/pubs/archive/46555.pdf

Source: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric
for ML Produc�on Readiness and Technical Debt Reduc�on

25

https://research.google.com/pubs/archive/46555.pdf

Data Tests
1. Feature expecta�ons are captured in a schema.
2. All features are beneficial.
3. No feature’s cost is too much.
4. Features adhere to meta-level requirements.
5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.
7. All input feature code is tested.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

26

https://research.google.com/pubs/archive/46555.pdf

Tests for Model Development
1. Model specs are reviewed and submi�ed.
2. Offline and online metrics correlate.
3. All hyperparameters have been tuned.
4. The impact of model staleness is known.
5. A simpler model is not be�er.
6. Model quality is sufficient on important data slices.
7. The model is tested for considera�ons of inclusion.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

27

https://research.google.com/pubs/archive/46555.pdf

ML Infrastructure Tests
1. Training is reproducible.
2. Model specs are unit tested.
3. The ML pipeline is Integra�on tested.
4. Model quality is validated before serving.
5. The model is debuggable.
6. Models are canaried before serving.
7. Serving models can be rolled back.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

28

https://research.google.com/pubs/archive/46555.pdf

Monitoring Tests
1. Dependency changes result in no�fica�on.
2. Data invariants hold for inputs.
3. Training and serving are not skewed.
4. Models are not too stale.
5. Models are numerically stable.
6. Compu�ng performance has not regressed.
7. Predic�on quality has not regressed.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

29

https://research.google.com/pubs/archive/46555.pdf

Case Study: Covid-19 Detec�on
SpiroCallSpiroCall

(from S20 midterm; assume cloud or hybrid deployment)
30

https://www.youtube.com/watch?v=e62ZL3dCQWM

Breakout Groups
In the Smartphone Covid Detec�on scenario
Discuss in groups:

Back le�: data tests
Back right: model dev. tests
Front right: infrastructure tests
Front le�: monitoring tests

For 8 min, discuss some of the listed point in the context of the
Covid-detec�on scenario: what would you do?
In #lecture, tagging group members, suggest what top 2 tests to
implement and how

31

Excursion: Test Automa�on

32

From Manual Tes�ng to Con�nuous
Integra�on

33

Anatomy of a Unit Test
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
 @Test
 public void testSanityTest(){
 // set up
 Graph g1 = new AdjacencyListGraph(10);
 Vertex s1 = new Vertex("A");
 Vertex s2 = new Vertex("B");
 // check expected results (oracle)

34

Ingredients to a Test
Specifica�on

Controlled environment

Test inputs (calls and parameters)

Expected outputs/behavior (oracle)

35

Unit Tes�ng Pi�alls
Working code, failing tests

"Works on my machine"

Tests break frequently

How to avoid?

36

Testability can be decomposed into...
Controllability:

Ability to influence system
internal state or behavior by
changing its inputs

Observability
Degree to which you can
determine that the behavior
went as expected.

37

Testable Code
Think about tes�ng when wri�ng code

Unit tes�ng encourages you to write testable code

Separate parts of the code to make them independently testable

Abstract func�onality behind interface, make it replaceable

Bonus: Test-Driven Development is a design and development
method in which you always write tests before wri�ng code

38

Build systems & Con�nuous Integra�on
Automate all build, analysis, test, and deployment steps from a
command line call

Ensure all dependencies and configura�ons are defined

Ideally reproducible and incremental

Distribute work for large jobs

Track results

Key CI benefit: Tests are regularly executed, part of process

39

40

Tracking Build Quality
Track quality indicators over �me, e.g.,

Build �me
Coverage
Sta�c analysis warnings
Performance results
Model quality measures
Number of TODOs in source code

41

Coverage

42

Tracking Model Quali�es
Many tools: MLFlow, ModelDB, Neptune, TensorBoard, Weights &
Biases, Comet.ml, ...

43

ModelDB Example
from verta import Client
client = Client("http://localhost:3000")

proj = client.set_project("My first ModelDB project")
expt = client.set_experiment("Default Experiment")

log a training run
run = client.set_experiment_run("First Run")
run.log_hyperparameters({"regularization" : 0.5})
model1 = # ... model training code goes here
run.log metric('accuracy', accuracy(model1, validationData))

44

ModelDB is an open-source system to version machine learning models including their ingredients code, data, config, and environment and to track ML metadata across
the model lifecycle.

Use ModelDB to:

Make your ML models reproducible Manage your ML experiments, build performance dashboards, and share reports Track models across their lifecycle including
development, deployment, and live monitoring

Speaker notes

Minimizing and Stubbing
Dependencies

45

How to unit test component with
dependency on other code?

46

How to Test Parts of a System?

original implementation hardcodes external API
def clean_gender(df):
 def clean(row):
 if pd.isnull(row['gender']):
 row['gender'] = gender_api_client.predict(row['firstname
 return row
 return df.apply(clean, axis=1)

47

Automa�ng Test Execu�on

def test_do_not_overwrite_gender():
 df = pd.DataFrame({'firstname': ['John', 'Jane', 'Jim'],
 'lastname': ['Doe', 'Doe', 'Doe'],
 'location': ['Pittsburgh, PA', 'Rome, It
 'gender': [np.nan, 'F', np.nan]})
 out = clean_gender(df, model_stub)
 assert(out['gender'] ==['M', 'F', 'M']).all()

48

Decoupling from Dependencies

Replace concrete API with an interface that caller can parameterize

def clean_gender(df, model):
 def clean(row):
 if pd.isnull(row['gender']):
 row['gender'] = model(row['firstname'],
 row['lastname'],
 row['location'])
 return row
 return df.apply(clean, axis=1)

49

Stubbing the Dependency

def test_do_not_overwrite_gender():
 def model_stub(first, last, location):
 return 'M'

 df = pd.DataFrame({'firstname': ['John', 'Jane', 'Jim'], 'la
 out = clean_gender(df, model_stub)
 assert(out['gender'] ==['M', 'F', 'M']).all()

50

General Tes�ng Strategy: Decoupling Code
Under Test

(Mocking frameworks provide infrastructure for expressing such tests
compactly.)

51

Tes�ng Error Handling /
Infrastructure Robustness

52

General Error Handling Strategies
Avoid silent errors

Recover locally if possible, propagate error if necessary -- fail en�re
task if needed

Explicitly handle excep�onal condi�ons and mistakes

Test correct error handling

If logging only, is anybody analyzing log files?

53

Test for Expected Excep�ons
def test_invalid_day_of_week_data():
 df = pd.DataFrame({'datetime_us': ['01/01/2020'],
 'delivery_count': [1]})
 with pytest.raises(ValueError):
 encode_day_of_week(df)

54

Test for Expected Excep�ons
def test_learning_fails_with_missing_data():
 df = pd.DataFrame({})
 with pytest.raises(NoDataError):
 learn(df)

55

Test Recovery Mechanisms with Stub
Use stubs to inject ar�ficial faults

testing retry mechanism
from retry.api import retry_call
import pytest

stub of a network connection, sometimes failing
class FailedConnection(Connection):
 remaining_failures = 0
 def __init__(self, failures):
 self.remaining_failures = failures
 def get(self, url):
 print(self.remaining failures)

56

Test Error Handling throughout Pipeline
Is invalid data rejected / repaired?

Are missing data updates raising errors?

Are unavailable APIs triggering errors?

Are failing deployments reported?

57

Log Error Occurrence
Even when reported or mi�gated, log the issue

Allows later analysis of frequency and pa�erns

Monitoring systems can raise alarms for anomalies

58

Example: Error Logging
from prometheus_client import Counter
connection_timeout_counter = Counter(
 'connection_retry_total',
 'Retry attempts on failed connections')

class RetryLogger():
 def warning(self, fmt, error, delay):
 connection_timeout_counter.inc()

retry_logger = RetryLogger()

59

Test Monitoring
Inject/simulate faulty behavior
Mock out no�fica�on service used by monitoring
Assert no�fica�on

class MyNotificationService extends NotificationService {
 public boolean receivedNotification = false;
 public void sendNotification(String msg) {
 receivedNotification = true; }
}
@Test void test() {
 Server s = getServer();
 MyNotificationService n = new MyNotificationService();
 Monitor m = new Monitor(s, n);
 s.stop();
 s.request(); s.request(); 60

Test Monitoring in Produc�on
Like fire drills (manual tests may be okay!)

Manual tests in produc�on, repeat regularly

Actually take down service or trigger wrong signal to monitor

61

Chaos Tes�ng

h�p://principlesofchaos.org
62

http://principlesofchaos.org/

Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in
production. Pioneered at Netflix

Speaker notes

Chaos Tes�ng Argument
Distributed systems are simply too complex to comprehensively
predict

experiment to learn how it behaves in the presence of faults
Base correc�ve ac�ons on experimental results because they
reflect real risks and actual events

Experimenta�on != tes�ng -- Observe behavior rather then expect
specific results
Simulate real-world problem in produc�on (e.g., take down server,
inject latency)
Minimize blast radius: Contain experiment scope

63

Ne�lix's Simian Army
Chaos Monkey: randomly disable produc�on instances
Latency Monkey: induces ar�ficial delays in our RESTful client-server
communica�on layer
Conformity Monkey: finds instances that don’t adhere to best-prac�ces and
shuts them down
Doctor Monkey: monitors external signs of health to detect unhealthy instances
Janitor Monkey: ensures cloud environment is running free of clu�er and waste
Security Monkey: finds security viola�ons or vulnerabili�es, and terminates the
offending instances
10–18 Monkey: detects problems in instances serving customers in mul�ple
geographic regions
Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an en�re
Amazon availability zone.

64

Chaos Toolkit
Infrastructure for chaos experiments
Driver for various infrastructure and failure cases
Domain specific language for experiment defini�ons

{
 "version": "1.0.0",
 "title": "What is the impact of an expired certificate on
 "description": "If a certificate expires, we should gracef
 "tags": ["tls"],
 "steady-state-hypothesis": {
 "title": "Application responds",
 "probes": [
 {
 "type": "probe",
 "name": "the-astre-service-must-be-running", 65

Chaos Experiments for ML Infrastructure?

66

Fault injection in production for testing in production. Requires monitoring and explicit experiments.

Speaker notes

Where to Focus Tes�ng?

67

Tes�ng in ML Pipelines
Usually assume ML libraries already tested (pandas, sklearn, etc)

Focus on custom code
data quality checks
data wrangling (feature engineering)
training setup
interac�on with other components

Consider tests of latency, throughput, memory, ...

68

Tes�ng Data Quality Checks
Test correct detec�on of problems

Test correct error handling or repair of detected problems

def test_invalid_day_of_week_data():
 ...

def test_fill_missing_gender():
 ...
def test_exception_for_missing_data():
 ...

69

Test Data Wrangling Code
num = data.Size.replace(r'[kM]+$', '', regex=True).
 astype(float)
factor = data.Size.str.extract(r'[\d\.]+([KM]+)',
 expand =False)
factor = factor.replace(['k','M'], [10**3, 10**6]).fillna(1)
data['Size'] = num*factor.astype(int)

data["Size"]= data["Size"].
 replace(regex =['k'], value='000')
data["Size"]= data["Size"].
 replace(regex =['M'], value='000000')
data["Size"]= data["Size"].astype(str). astype(float)

70

both attempts are broken:

Variant A, returns 10 for “10k”
Variant B, returns 100.5000000 for “100.5M”

Speaker notes

Test Model Training Setup?
Execute training with small sample data

Ensure shape of model and data as expected (e.g., tensor dimensions)

71

Test Interac�ons with Other Components
Test error handling for detec�ng connec�on/data problems

loading training data
feature server
uploading serialized model
A/B tes�ng infrastructure

72

Integra�on and system
tests

73

Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one programmer and is stored in a single file. Different
programming languages have different units: In C++ and Java the unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit
may be the entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for units to function perfectly in isolation but to fail
when integrated. For example because they share an area of the computer memory or because the order of invocation of the different methods is not the one anticipated by
the different programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.) that make up the product delivered to the customer.
System testing focuses on defects that arise at this highest level of integration. Typically system testing includes many types of testing: functionality, usability, security,
internationalization and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the customer accepting the software and giving us their
money. From the customer's point of view, they would generally like the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the
vendor's point of view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical strategic questions that should be
addressed before acceptance testing are: Who defines the level of the acceptance testing? Who creates the test scripts? Who executes the tests? What is the pass/fail
criteria for the acceptance test? When and how do we get paid?

Speaker notes

Integra�on and system tests
Test larger units of behavior

O�en based on use cases or user stories -- customer perspec�ve

@Test void gameTest() {
 Poker game = new Poker();
 Player p = new Player();
 Player q = new Player();
 game.shuffle(seed)
 game.add(p);
 game.add(q);
 game.deal();
 p.bet(100);
 q.bet(100);
 p.call(); 74

Integra�on tests
Test combined behavior of mul�ple func�ons

def test_cleaning_with_feature_eng() {
 d = load_test_data();
 cd = clean(d);
 f = feature3.encode(cd);
 assert(no_missing_values(f["m"]));
 assert(max(f["m"]) <= 1.0);
}

75

Test Integra�on of Components
// making predictions with an ensemble of models
function predict_price(data, models, timeoutms) {
 // send asynchronous REST requests all models
 const requests = models.map(model => rpc(model, data, {time
 // collect all answers and return average if at least two m
 return Promise.all(requests).then(predictions => {
 const success = predictions.filter(v => v >= 0)
 if (success.length < 2) throw new Error("Too many model
 return success.reduce((a, b) => a + b, 0) / success.len
 })
}

76

End-To-End Test of En�re Pipeline
def test_pipeline():
 train = pd.read_csv('pipelinetest_training.csv', parse_dates
 test = pd.read_csv('pipelinetest_test.csv', parse_dates=True
 X_train, y_train = prepare_data(train)
 X_test, y_test = prepare_data(test)
 model = learn(X_train, y_train)
 accuracy = eval(model, X_test, y_test)
 assert accuracy > 0.9

77

System Tes�ng from a User Perspec�ve
Test the product as a whole, not just components

Click through user interface, achieve task (o�en manually performed)

Derived from requirements (use cases, user stories)

Tes�ng in produc�on

78

The V-Model of Tes�ng

79

Code Review and Sta�c
Analysis

80

Code Review
Manual inspec�on of code

Looking for problems and possible improvements
Possibly following checklists
Individually or as group

Modern code review: Incremental review at checking
Review individual changes before merging
Pull requests on GitHub
Not very effec�ve at finding bugs, but many other benefits:
knowledge transfer, code imporvement, shared code ownership,
improving tes�ng

81

82

Subtle Bugs in Data Wrangling Code
df['Join_year'] = df.Joined.dropna().map(
 lambda x: x.split(',')[1].split(' ')[1])

df.loc[idx_nan_age,'Age'].loc[idx_nan_age] =
 df['Title'].loc[idx_nan_age].map(map_means)

df["Weight"].astype(str).astype(int)

df['Reviws'] = df['Reviews'].apply(int)

83

We did code review earlier together

Speaker notes

Sta�c Analysis, Code Lin�ng
Automa�c detec�on of problema�c pa�erns based on code structure

if (user.jobTitle = "manager") {
 ...
}

function fn() {
 x = 1;
 return x;
 x = 3;
}

84

Sta�c Analysis for Data Science Code
Lots of research
Style issues in Python
Shape analysis of tensors in deep learning
Analysis of flow of datasets to detect data leakage
...

Examples:
Yang, Chenyang, et al.. "Data Leakage in Notebooks: Sta�c Detec�on and Be�er Processes." Proc.
ASE (2022).
Lagouvardos, S. et al. (2020). Sta�c analysis of shape in TensorFlow programs. In Proc. ECOOP.
Wang, Jiawei, et al. "Be�er code, be�er sharing: on the need of analyzing jupyter notebooks." In
Proc. ICSE-NIER. 2020.

85

Process Integra�on: Sta�c Analysis
Warnings during Code Review

86

Social engineering to force developers to pay attention. Also possible with integration in pull requests on GitHub.

Speaker notes

Bonus: Data Linter at Google
Miscoding

Number, date, �me as string
Enum as real
Tokenizable string (long strings,
all unique)
Zip code as number

Outliers and scaling
Unnormalized feature (varies
widely)
Tailed distribu�ons
Uncommon sign

Packaging
Duplicate rows
Empty/missing data

Further readings: Hynes, Nick, D. Sculley, and Michael Terry.
. NIPS MLSys Workshop. 2017.

The data linter: Lightweight,
automated sanity checking for ML data sets

87

http://learningsys.org/nips17/assets/papers/paper_19.pdf

Summary
Beyond model and data quality: Quality of the infrastructure
ma�ers, danger of silent mistakes
Automate pipelines to foster tes�ng, evolu�on, and
experimenta�on
Many SE techniques for test automa�on, tes�ng robustness, test
adequacy, tes�ng in produc�on useful for infrastructure quality

88

Further Readings
O'Leary, Ka�e, and Makoto Uchida. "

." Proc. Third Conference on Machine
Learning and Systems (MLSys) (2020).
Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test
Score: A Rubric for ML Produc�on Readiness and Technical Debt Reduc�on.
Proceedings of IEEE Big Data (2017)
Zinkevich, Mar�n.

. Google Blog Post, 2017
Serban, Alex, Koen van der Blom, Holger Hoos, and Joost Visser. "

." In Proc.
ACM/IEEE Interna�onal Symposium on Empirical So�ware Engineering and
Measurement (2020).

Common problems with Crea�ng Machine
Learning Pipelines from Exis�ng Code

Rules of Machine Learning: Best Prac�ces for ML
Engineering

Adop�on and
Effects of So�ware Engineering Best Prac�ces in Machine Learning

89

https://research.google/pubs/pub48984.pdf
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://arxiv.org/pdf/2007.14130

Machine Learning in Produc�on/AI Engineering • Chris�an Kaestner & Sherry Wu, Carnegie Mellon University • Fall 2024

